Luminescent Magnetic Nanoparticles Encapsulated in MOFs for Highly Selective and Sensitive Detection of ClO⁻/SCN⁻ and Anti-

Counterfeiting

Chaorui Li^a, Jun Hai^a, Siliang Li^b, Baodui Wang^{*a} and Zhengyin Yang^{*a}

^aState Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, P.R. China.

^bSchool of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China

E-mail: wangbd@lzu.edu.cn; yangzy@lzu.edu.cn.

Scheme S1 Synthetic Route of 1d.

Fig. S1 ¹H NMR spectra of 2-benzoylbenzoic acid (BBA) in DMSO-d₆.

Fig. S2 FT-IR spectra of BBA-PEG-DBA (1a) (top), Eu-BBA-PEG-DBA (1b) (middle) and Eu-BBA-PEG-DBA-Fe₃O₄ (1c) (bottom).

Fig. S3 Fluorescence emission spectra of **1c** (green), nano-ZIF-8 (red) and nano-ZIF-8 in the presence of ClO⁻ (50 μ M) (blue) in ultrapure water. ($\lambda_{ex} = 284$ nm).

Fig. S4 (a) SEM image of pure ZIF-8. (b) TEM image of Fe_3O_4 nanoparticles.

Fig. S5 (a) A calibration profile of fluorescence emission intensity of nano-ZIF-8 at 613 nm versus ClO⁻ concentration. (b) A calibration profile of fluorescence emission intensity of nano-ZIF-8-ClO⁻ system at 613 nm versus SCN⁻ concentration.

Fig. S6 Determination of the detection limit of 1d for sensing ClO⁻ in ultrapure water. ($\lambda_{ex} = 284$ nm).

Fig. S7 (a) Fluorescence emission spectra of nano-ZIF-8 in the absence and presence of ClO⁻ (1 *equiv.*) and other various interference anions (5 *equiv.*) in ultrapure water. (b) Fluorescence emission spectra of nano-ZIF-8-ClO⁻ system in the absence and presence of SCN⁻ (1 *equiv.*) and other various interference anions (5 *equiv.*) in ultrapure water. ($\lambda_{ex} = 284$ nm).

Fig. S8 Effect of time on the fluorescence responses at 613 nm of nano-ZIF-8 to ClO⁻ (50 μ M) (a) and nano-ZIF-8-ClO⁻ system to SCN⁻ (50 μ M) (b) in ultrapure water. (λ_{ex} = 284 nm).

Fluorescent probe	Interfering ions	LOD (nM)	Sobution	Application	Reference
Coumarin derivative	No interferences	40	PBS/CH, CN (V/V 7:3)	Real water samples	[90]
				Test strips	
				Biological samples	
СМВІ	SH-, SO1+, ONOO-	33	PBS/210H(V/V 9:1)	Living cells	[91]
R0610	No interferences	28.8	PBS/PLOH (V/V 7:3)	Living cells	[92]
4'-Hydroxy-3'-(2,4-dinitrophe nylhydrazone)methyl-4-biphe nylcarbonitrile (HMB)	No interferences	49	PBS/DMS0 (V/V 99:1)	Living cells	[93]
nano-ZIF-8	No interferences	0.133	Ultrapure water	Solid-state Real water samples	This work
				Anti-conterfeiting	

Table S1 Comparison of the efficiency of nano-ZIF-8 with those previously reported probes for sensing ClO⁻.

Table S2 Comparison of the efficiency of nano-ZIF-8-ClO⁻ system with those previously reported probes for sensing SCN⁻.

Fhiorescent probe	Interfering ions	LOD (nM)	Solution	Application	Reference
Citrate-stabilized AuNPs and	Hg ¹ ' (ED TA	140	PBS(pH 7.0, 10 mM)	Real water samples	[94]
amino-functionalized CDs	solved this problem)	36			
RTA	No interferences	10	HEPES/DMS0 (V/V 3:7)	Living cells	[95]
[{Ru(bpy)1}1(µ1-L')](PF4).	No interferences	735	HEPES/CH,CN (V/V 1:1)		[96]
[{Ru(bpy)1}1(µ1-L ¹)](PF4).	F-,HSO1-		HEPES/CH,CN (V/V 1:1)		[96]
Nano-ZIF-8-C10	No interferences	0.204	Ultrapure water	Solid-state	This
				Real water samples	work
				Anti-counterfeiting	