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Methods of free energy calculations for NP endocytosis
To understand the effect of the elasticity of a NP on its endocytosis, we 
calculate the change in free energy as a function of the distance between the 
particle center and the bilayer midplane by the way of constrained 
thermodynamic integration (TI). 

To determine the free energy change of a NP as it is uptaken by bilayer, 
we adopt a parameter λ to measure the normalized distance from the NP center 
to the midplane of membrane as

.𝑧(𝜆) = 𝑧(𝜆 = 0) + 𝜆[𝑧(𝜆 = 1) ‒ 𝑧(𝜆 = 0)] 

(1)

Here, λ is set to 0 when the NP stands at an initial position above the lipid 
bilayer. As membrane wraps the NP, λ gradually increase and finally reaches 1 
when the NP is wholly wrapped. The free energy change in this process is 
expressed as: 
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(2)

According to eqn (2), we discretize the NP uptake path by choosing a series 
of λ values between 0 and 1. For each chosen value of λ, a harmonic potential 

𝑈(𝜆) =
𝑘𝑍

2
[𝑍 ‒ 𝑧(𝜆)]2

(3)

is imposed to confine the motion of the NP in the z-direction, where  𝑘𝑧 = 300

and  are the spring constant and equilibrium position of the potential, 𝑧(𝜆)

respectively; Z is the position of the NP center. Under the harmonic constraint, 
the NP is forced to oscillate around a pseudo-equilibrium position  in the 〈𝑍〉

vicinity of , where  is the ensemble-averaged position of the NP center. 𝑧(𝜆) 〈𝑍〉

The derivative of the free energy is determined from the constrained interaction 
between the NP and surrounding as

∂𝐹(𝜆)
∂𝜆

= 〈∂𝑈(𝜆)
∂𝜆 〉.

(4)

The integrand of eqn (4) is thus obtained from the simulated value of  〈𝑍〉

as:



∂𝐹(𝜆)
∂𝜆

= 𝑘𝑧[〈𝑍〉 ‒ 𝑧(𝜆)] 𝑧(𝜆 = 0).

(5)

Integration this expression allows the free energy change to be determined 
as a function of distance from the bilayer midplane, 

∆𝐹 =
𝑧(𝜆 = 𝜀)

∫
𝑧(𝜆 = 0)

𝑘𝑧[𝑧(𝜆) ‒ 〈𝑍〉]𝑑𝑧,     (0 ≤ 𝜀 ≤ 1).

(6)

Based on equation (6), we calculated the PMF profiles of the endocytic 
process for NPs as a function of the distance between the particle center and 
the membrane midplane, as displayed in Fig. 8 in the main text. 



Mechanical properties for model membrane

The bending rigidity of a flat membrane can be derived using thermal 
fluctuation spectrum of a membrane1-3.

A symmetric flat membrane can be modeled as a two-dimensional 
curvature-elastic surface. The energy of a deformed piece of membrane is given 
by the classical Helfrich Hamiltonian4,5 as following,

𝐸𝑏𝑒𝑛𝑑 =
1
2∫𝑑𝑥𝑑𝑦[𝜅(∆ℎ)2 + Σ(∆ℎ)2]

(7)

Where  and  are the bending modulus and lateral surface tension, 𝜅 Σ

respectively.  is the membrane shape, represented using the height of the ℎ(𝑥,𝑦)

membrane above the same reference plane. For a membrane with a quadratic 

frame of size , we can expand the bilayer shape in modes , 𝐿 × 𝐿
ℎ(𝑟) = ∑

𝑞

ℎ𝑞𝑒𝑖𝑞 ∙ 𝑟

with , . Equation (7) can be rewritten as,𝑞 = 2𝜋/𝐿(𝑛𝑥,𝑛𝑦) 𝑛𝑥,𝑛𝑦 ∈ 𝑍

𝐸𝑏𝑒𝑛𝑑 = 𝐿2∑
𝑞
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2
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1
2
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(8)

From the equipartition theorem, we have, 

1
2
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2
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1
2
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(9)

We therefore can immediately give,

〈|ℎ𝑞|2〉 =
𝑘𝐵𝑇

𝐿2[𝜅𝑞4 + Σ𝑞2]

(10)

Measuring the spectrum of thermal fluctuation of membrane, and fitting it 
to equation (10) gives the bending modulus  and lateral tension . Obviously, 𝜅 Σ

for a membrane with zero tension,  scales linearly with .〈|ℎ𝑞|2〉 𝑞4

To measure the bending modulus of our modeled membranes, a flat 
square membrane spanning in the x-y plane is built using a total of 7200 lipids. 
Periodic boundary conditions (PBCs) have been used to obtain an infinite 
membrane in the liquid phase. Throughout the simulation of each modeled 



system, the box lengths in x and y dimensions of the membrane-spanning 
domain were varied to achieve a zero external pressure, while the height of the 
box remained constant. The temperature is set to , the time step is 𝑇 = 1.1𝜖/𝑘𝐵

set to 0.005 . The built systems are first relaxed for  (  steps), 𝜏 20000 𝜏 4 × 106

followed by an equilibrium simulation of  (  steps) for fluctuation 30000 𝜏 6 × 106

analyses. For each simulated system, the trajectory is saved every 300 steps, 
a total of 20000 frames are used for fluctuation calculations.

The membrane is divided into a  grid, the length of each patch is 32 × 32

. For each frame of the simulation trajectory, the displacements of each 𝑙 = 𝐿/32

lipid head from the reference plane in each patch is averaged to calculate the 
membrane shape , . The derived  is expanded in Fourier modes ℎ(𝑟) 𝑟 = (𝑥, 𝑦) ℎ(𝑟)

using python program. The bending modulus is obtained by fitting  to ℎ𝑞

equation (10), see figure S6(a).

To study the mechanical properties of membrane with different value of 
, five systems of free membrane are constructed by setting  equals 1.00, 𝛼𝑚 𝛼𝑚

1.02, 1.04, 1.06, 1.08. The measured values of bending modulus ( ) are 𝜅

depicted as a function of  in figure S6(b). 𝛼𝑚

The effects of global area constraint to the uptake kinetics. 

To examine the effects of global area constraint to the uptake kinetics, we 
studied the uptake kinetics of elastic NP with varied , taking the sphere as an 𝑘𝑎

example. The volume of the simulated sphere is set to 533 . (Fig. 10)𝜋𝜎3

It is found that the enhancement of global area constraint (  changed from 𝑘𝑎

 to ) affects negligibly to the uptake kinetics for the sphere.1 𝜖𝜎 ‒ 2 100 𝜖𝜎 ‒ 2

After that, a more flexible spherical NP ( , , ) 𝑘𝑠 = 20 𝜖𝜎 ‒ 2 𝑘𝑏 = 0.5 𝜖 𝑘𝑣 = 10 𝜖𝜎 ‒ 2

was tested to study the effects of global area constraint to the uptake kinetics. 
It is observed that the uptake kinetics differs very slightly.

Based on the above calculations, it is concluded that the global area 
constraint plays a less important role in regulating the uptake kinetics, in 
comparison with the bond and bending constraints.

  



Figure S1 Stretching forces are applied to the prolate or oblate NP to examine 
their elastic behaviors, with the force versus simulation time recorded in (a), 
and the axial in x-dimension and transverse diameters in y- and z-dimensions 
shown in (b-d).



Figure S2 Endocytic process of elastic spherical NP with a volume of 972 , 𝜋𝜎3

the radius of which is 9σ. The parameter of membrane rigidity  is set to 1.04, 𝛼𝑚

the strength of membrane-NP interactions  is set to 1.3. (a) Representative 𝛼𝐿𝐽

snapshots of the internalization pathway of elastic spherical NP, the contour 
line of NP in each snapshot is shown in (b), with the color denoting the value of 
mean curvature. Time evolutions of root-mean-squared-deviation (RMSD) and 
the transverse diameters in the y and z dimensions are shown in (c) and (d), 
respectively.



Figure S3 Stretching response simulations of elastic sphere with varied bending 
modulus . The volume of sphere is 533 . (a) Axial and transverse diameters 𝑘𝑏 𝜋𝜎3

(  and ) of the elastic sphere versus the total stretching force. The 𝐷𝐴 𝐷𝑇

parameters used for spherical NP: , , . Five 𝑘𝑠 = 20 𝜖𝜎 ‒ 2 𝑘𝑎 = 20 𝜖𝜎 ‒ 2 𝑘𝑣 = 10 𝜖𝜎 ‒ 3

elastic spherical NPs with varied values of bending modulus have been tested, 
that is,  was set to , , , , and . (b) The initial in-plane shear 𝑘𝑏 5 𝜖 20 𝜖 100 𝜖 500 𝜖 1000 𝜖

modulus ( ) and Young’s modulus versus the bending modulus ( ).𝜇0 𝑘𝑏



Figure S4 Stretching response simulations of elastic prolate with varied bending 
modulus . The volume of prolate is 533 . Stretching force is applied to the 𝑘𝑏 𝜋𝜎3

prolate in x-direction (a-c), and z-direction (d-f) in order to test the anisotropy of 
elasticity. (b) and (e) depict the axial and transverse diameters (  and ) 𝐷𝐴 𝐷𝑇

versus the total stretching force. (c) and (f) depict the initial in-plane shear 
modulus ( ) and Young’s moduli versus the bending modulus ( ). For these 𝜇0 𝑘𝑏

simulations, , , . Five elastic prolate NPs with 𝑘𝑠 = 20 𝜖𝜎 ‒ 2 𝑘𝑎 = 20 𝜖𝜎 ‒ 2 𝑘𝑣 = 10 𝜖𝜎 ‒ 3

varied values of bending modulus have been tested, that is,  was set to , 𝑘𝑏 5 𝜖

, , , and .20 𝜖 100 𝜖 500 𝜖 1000 𝜖



Figure S5 Stretching response simulations of elastic oblate with varied bending 
modulus . The volume of oblate is 533 . Stretching force is applied to the 𝑘𝑏 𝜋𝜎3

prolate in x-direction (a-c), and y-direction (d-f) in order to test the anisotropy of 
elasticity. (b) and (e) depict the axial and transverse diameters (  and ) 𝐷𝐴 𝐷𝑇

versus the total stretching force. (c) and (f) depict the initial in-plane shear 
modulus ( ) and Young’s moduli ( ) versus the bending modulus ( ). For these 𝜇0 𝐸 𝑘𝑏

simulations, , , . Five elastic oblate NPs with 𝑘𝑠 = 20 𝜖𝜎 ‒ 2 𝑘𝑎 = 20 𝜖𝜎 ‒ 2 𝑘𝑣 = 10 𝜖𝜎 ‒ 3

varied values of bending modulus have been tested, that is,  was set to , 𝑘𝑏 5 𝜖

, , , and .20 𝜖 100 𝜖 500 𝜖 1000 𝜖



Figure S6 (a) The power spectrum  for the bilayer system with . 〈|ℎ𝑞|2〉 𝛼𝑚 = 1.00

(b) The relation between membrane bending modulus ( ) with .𝜅 𝛼𝑚



Figure S7 To study the effects of volume and membrane rigidity on the 
behaviors of elastic sphere internalization, the phase diagram for the final states 
of rigid and elastic spherical NPs with a volume of 972  being wrapped by 𝜋𝜎3

bilayer (shown in the right row). Note that the phase diagram for the sphere with 
a volume of 533  is depicted again for direct comparison. The final states are 𝜋𝜎3

represented using symbols: ▼ partially wrapped structure, ♦ wrapped structure.



Figure S8 Sequential snapshots for process of the formation of sandwiched 
superstructure of elastic oblate NP incorporated by membrane. The volume of 
oblate is 533 . The membrane rigidity  is set to 1.02, the strength of 𝜋𝜎3 𝛼𝑚

membrane-NP interactions  is set to 1.9.𝛼𝐿𝐽

Figure S9 Sequential snapshots for process of the formation of sandwiched 
superstructure of elastic prolate NP incorporated by membrane. The volume of 
prolate is 533 . The membrane rigidity  is set to 1.02, the strength of 𝜋𝜎3 𝛼𝑚

membrane-NP interactions  is set to 1.9.𝛼𝐿𝐽



 
Figure S10 The uptake behaviors for the sphere, with varied constraint 
constants for the global surface area constraint. Time evolutions of coverage 
percentage (left), RMSD (middle) and surface area (right) as a function of 
simulation time are depicted. The volume of the sphere is 533 . Upper panel: 𝜋𝜎3

, , ; lower panel: , , . 𝑘𝑠 = 20 𝜖𝜎 ‒ 2 𝑘𝑏 = 5 𝜖 𝑘𝑣 = 10 𝜖𝜎 ‒ 2 𝑘𝑠 = 20 𝜖𝜎 ‒ 2 𝑘𝑏 = 0.5 𝜖 𝑘𝑣 = 10 𝜖𝜎 ‒ 2

Two values of  are tested herein: , and .𝑘𝑎 𝑘𝑎 = 1 𝜖𝜎 ‒ 2 𝑘𝑎 = 100 𝜖𝜎 ‒ 2

Figure S11 Stretching response simulation for the sphere with varied elasticity. 
Axial and transverse diameters (  and ) of the elastic sphere versus 𝐷𝐴 𝐷𝑇

stretching force are depicted. The stiffness of sphere is modulated using  and 𝑘𝑠

. The more rigid sphere setup: , , marked in red in the figure; 𝑘𝑏 𝑘𝑠 = 50 𝜖𝜎 ‒ 2 𝑘𝑏 = 10 𝜖

The less rigid sphere setup: , , marked in blue in the figure. 𝑘𝑠 = 20 𝜖𝜎 ‒ 2 𝑘𝑏 = 5 𝜖



For the simulations herein, , . The calculated initial in-𝑘𝑎 = 20 𝜖𝜎 ‒ 2 𝑘𝑣 = 10 𝜖𝜎 ‒ 3

plane shear modulus ( ) and Young’s moduli ( ) are depicted in the figure. 𝜇0 𝐸

Table S1 Simulation parameters used in the present work.

 ( )𝑘𝑠 𝜖𝜎 ‒ 2  ( )𝑘𝑏 𝜖  ( )𝑘𝑎 𝜖𝜎 ‒ 2  ( )𝑘𝑣 𝜖𝜎 ‒ 3

Sphere 20.0 5.0 20.0 10.0

Oblate 20.0 5.0 20.0 10.0

Prolate 20.0 5.0 20.0 10.0
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