Phonon confinement effect in two-dimensional nanocrystals

of black phosphorus with anisotropic phonon dispersions[†]

Tong Lin,^{‡ab} Xin Cong, ^{‡ab} Miao-Ling Lin,^{ab} Xue-lu Liu^{*ab} and Ping-Heng Tan^{*ab}

 ^a State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
^b CAS Center of Excellence in Topological Quantum Computation, and College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing 100049, China.

[‡] These authors contributed equally to this work.

* E-mail: liuxuelu@semi.ac.cn, phtan@semi.ac.cn

Fig. S1. (a) The unit cell of bulk BP with top and side view, where \vec{a}_1 , \vec{a}_2 and \vec{a}_3 indicate lattice vectors. (b) Phonon dispersion of bulk BP and vibrational density of states (VDOS) in Γ XY plane (red) and the whole BZ (black). The insert shows BZ of the unit cell, where \vec{b}_1 , \vec{b}_2 and \vec{b}_3 indicate reciprocal lattice vectors. VDOS in Γ XY plane and in the whole BZ show a little discrepancy in low frequency range ($\omega < 300 cm^{-1}$), while they are almost the same in the high frequency range ($\omega > 300 cm^{-1}$).

Fig. S2 (a) Phonon dispersion along ΓX and ΓY directions, and the vibration modes at Γ point are divided into Raman active (red) and inactive (blue) modes. (b) Line shape of Raman modes considering the contributions from the A_{g-}^2 , B_{2g-} and A_{g-}^1 related phonon branches (red) and that from all the phonon branches (blue). Both of two profiles are stimulated with $L_D=2nm$, $\alpha=18$. In the latter line shape, additional peaks appear, which are contributed from phonon branches related with Raman-inactive modes at Γ point, i.e., A_u , B_{3g} and B_{2u} . Actually, the additional peaks related with Raman-inactive modes cannot be observed in the Raman spectra.