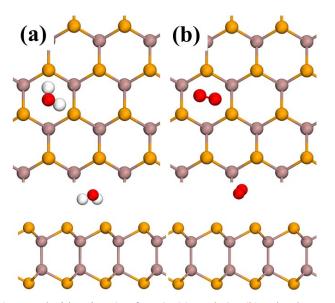
Supporting Information

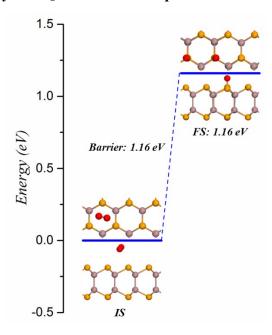
Effect of Light illumination and Se vacancy Toward Fast Oxidation of Ultrathin Gallium selenide

Li Shi,¹ Qiang Li,^{1*} Yixin Ouyang,¹ and Jinlan Wang^{1,2*}

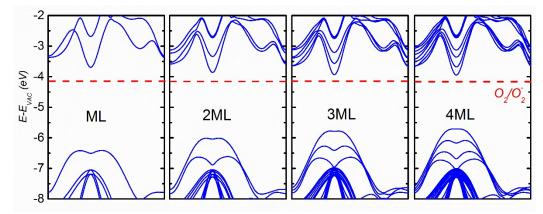

¹School of Physics, Southeast University, Nanjing 211189, China

²Synergetic Innovation Center for Quantum Effects and Applications (SICQEA),

Hunan Normal University, Changsha, Hunan 410081, China


*Corresponding Author: E-mail: <u>jlwang@seu.edu.cn</u>; <u>Qiang.li@seu.edu.cn</u>

1. Adsorbed structures of H₂O and O₂


Fig. S1. Structures (top and side views) of H_2O (a) and O_2 (b) adsorb on vacancy-free GaSe surface, respectively. Ga, Se, O and H atoms are labeled as brown, yellow, red and white colors, respectively.

2. Reaction pathways of O2 dissociation on perfect surface.

Fig. S2. Energy difference of initial (O₂ physisorbed on the surface of GaSe) and final state (O₂ dissociated and adsorbed onto surface of GaSe and formed Se-O bond)

3. HSE band for monolayer GaSe from monolayer to four-layer

Fig. S3. The HSE band structure for monolayer to four layer of GaSe. The dashed line identifies the redox potential of O_2/O_2 -.

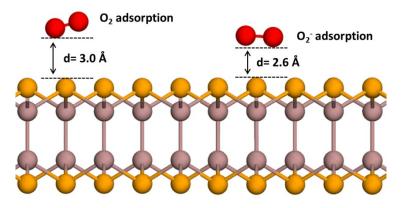


Fig. S4 The adsorption structure of O₂ and O₂ physically adsorbing on the surface GaSe.

Table S1 Three types of attacking Ga-Se bonds and their energy.

Type of Ga-Se bond	I IV	I III or II IV	ШШ
Energy (eV)	203.594	203.261	203.261

4. Adsorbed structures of H₂O and O₂ on SeVs

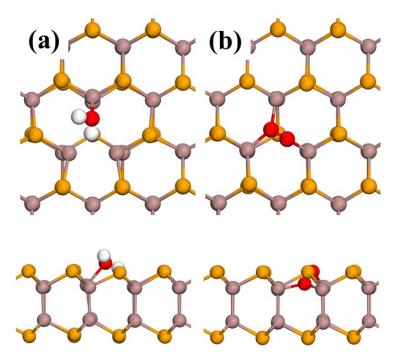
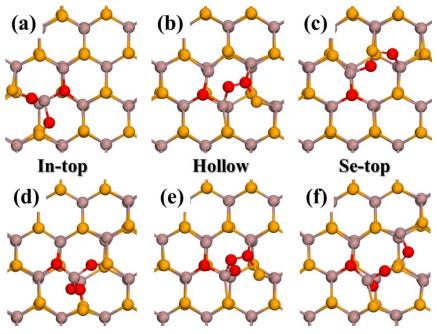



Fig. S5. Structures (top and side views) of H_2O (a) and O_2 (b) adsorb on Se-vacancy GaSe surface, respectively.

5. Different reaction products of attacking Ga-Se bond

Fig. S6. Different reaction pathways and products of attacking Ga-Se bond: In-top, Se-top and hollow. (a), (b) and (c) for H_2O -attacked SeVs; (d), (e) and (f) for O_2 -attacked SeVs.

Table S2 Energy difference (ΔE , eV) of three kinds of final reaction products with respect to physisorption. $\Delta E = E_{chem}$.- E_{phy}

O ₂ attacks sites	In-top	Hollow	Se-top
H ₂ O	-1.39	0.63	-1.72
\mathbf{O}_2	-1.86	0.40	-1.17