Electronic Supplementary Information for

Nanoimprint lithography of nanoporous carbon materials for micro-supercapacitor architectures

Stefanie Lochmann,^a Julia Grothe,^a Kai Eckhardt,^a Desirée Leistenschneider,^a Lars Borchardt,^a and Stefan Kaskel^{*a}

Dresden University of Technology, Bergstrasse 66, 01069 Dresden, Germany.

E-mail: stefan.kaskel@tu-dresden.de; Fax: +49 351 463 37287; Tel: +49 351 463 33632

S.1. Methods

Leakage current calculation

Leakage current is calculated measuring the self-discharge in open circuit after pre-charging the micro-EDLC to 1 V. The corresponding leakage current was estimated using the following equation:

$$I_{leak} = C \cdot \frac{dV}{dt}$$
(1)

Where I_{leak} is the leakage current, C is the capacitance obtained from the CV curves dV/dt is the discharge rate.

Energy and Power Densities

The electrochemical performance of the micro-EDLC devices was based on galvanostatic charge discharge measurements. The volumetric energy density ($E_{vol.}$) was obtained from equation (2):

$$E_{\text{vol.}} = \frac{A_{\text{dis}} \cdot I}{V_{\text{IDE}} \cdot 3600}$$
(2)

where $A_{dis.}$ is the area of the integrated discharge curve and I the applied current. V_{IDE} is the complete volume of the interdigital electrodes.

The Volumetric power density (P) is calculated from the energy density (E_{vol}) and the discharge time t_{dis} :

$$P_{\rm vol.} = \frac{E_{\rm vol}}{t_{\rm dis}} \tag{3}$$

S.2. Supplementary Figures

S.1

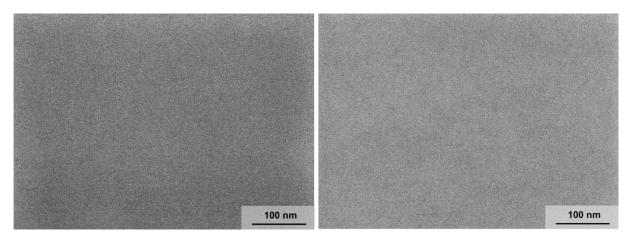


Figure S.1 - SEM images of a C_F pyrolyzed at 900 °C (left) and an AC_F-30 (right).

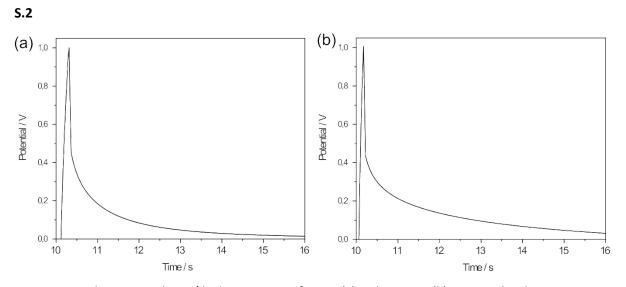


Figure S.2 – Galvanostatic charge/discharge curves of $C_{IDE-0,5}$ (a) and N- $C_{IDE-0,5}$ (b) measured with a current density of 1 mA cm⁻².

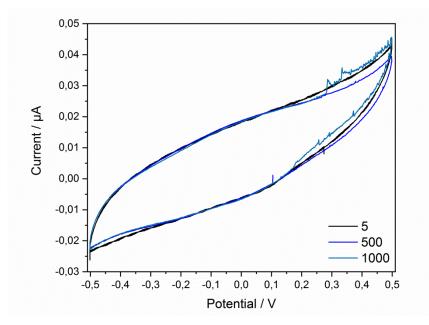


Figure S.3 – Cyclic voltammograms of N- $C_{IDE-0,5}$ at different cycle numbers (5; 500; 1000) measured at a scan rate of 10 mV s⁻¹.

S.4

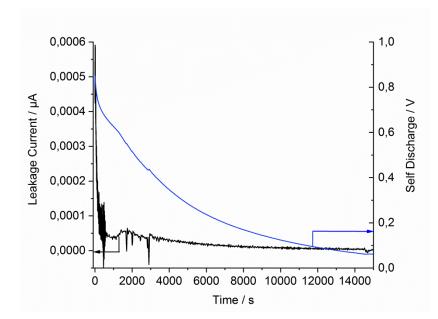


Figure S.4 – Leakage current and self-discharge characteristics of a $N-C_{IDE-0,5}$ after charging to 1 V and measuring the self-discharge at open circuit.

At the beginning a high leakage current is observed. After 4.000 seconds the current regulates to a constant value of $1,5\cdot 10^{-5}$ µA. The leakage current is probably caused by residual carbon between the lines of the two electrodes. An increase of the spacing between the fingers could reduce these effects.