Supporting Information:

Self-assembled KCu₇S₄ nanowires monolayer for self-powered near-infrared photodetector

You-Yi Wang^{a,†}, Ya-Dong Wu^{b,†}, Wei Peng^a, Yong-Hong Song^b,

Bao Wang^c, Chun-Yan Wu^{a,*}, Yang Lu^{b,*}

^{a.} School of Electronic Science and Applied Physics, Hefei University of Technology,

Hefei Anhui 230009, P. R. China. E-mail: cywu@hfut.edu.cn

^{b.} School of Chemistry and Chemical Engineering, Biomedical and Environmental

Interdisciplinary Research Centre, Hefei University of Technology, Hefei, Anhui

230009, P. R. China. E-mail: yanglu@hfut.edu.cn

^{c.} State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, P. R. China

† These authors contributed equally to this work.

Figure S1. (a) UV-vis absorption spectrum of KCu_7S_4 nanowires. It presents a strong absorption in NIR region, which leads to efficient photovoltaic performance when illuminated by NIR light; (b) XPS survey spectrum of PVP-coated KCu_7S_4 nanowires.

Figure S2. SEM images of KCu₇S₄ nanowires. (a) When the surface pressure value exceeds 25 mN/m (27.5 mN/m), some overlaps and folds that parallels the barrier direction sequentially formed; (b) Equivalent mass per square centimeter of PD3 disordered KCu₇S₄ nanowires film fabricated by spray-assisted technique.

Figure S3. Transmittance of different KCu₇S₄ nanowires monolayers on PET substrate.

Figure S4. The typical current (I) - voltage (V) curve of the close-packed KCu₇S₄ nanowire film (PD3) before and after plasma treatment upon illumination (980 nm, 300 μ W cm⁻²). PVP is used as surfactant to improve the nanowire assembly. The amount of PVP coated on the surface of KCu₇S₄ nanowire is tiny. We removed the PVP by plasma treatment. In fact, the difference of current before and after plasma treatment is slight.

Figure S5. The typical current (*I*) - voltage (*V*) curve of the KCu₇S₄ single nanowire in dark and upon illumination (980 nm, 295.3 μ W cm⁻²). The linear behavior shows the well *Ohmic* contact between Au electrodes and KCu₇S₄.

Figure S6. The typical current (*I*) - voltage (*V*) curve of the device Au/Si/In:Ga in dark and upon illumination (980 nm, 295.3 μ W cm⁻²). (a) The Au/Si Schottky junction exhibits a photovoltaic characteristics with open-circuit voltage (V_{OC}) 0.03 V and short-circuit current (I_{SC}) 0.6 μ A, respectively. (b) The I_{on}/I_{off} ratio at zero bias is ~10².

Figure S7. The typical current (I) - voltage (V) curve of the In:Ga/Si/In:Ga in dark. The linear behavior shows the well *Ohmic* contact between In:Ga electrodes and Si.

Figure S8. Plots of responsivity and detectivity at zero bias as a function of incident light wavelength.

Figure S9. Photocurrent mapping of the disordered device.

heterojunction	open-circuit voltage (V _{OC})	short-circuit current (<i>I</i> _{SC})	power conversion efficiency (η)	fill factor (FF)
PD1	0.12V	3.27 nA	2.2×10 ⁻⁵ %	17 %
PD2	0.06 V	0.3 μΑ	1.5×10 ⁻³ %	24 %
PD3	0.14 V	1.62 µA	0.01 %	25 %
PDD	0.19 V	68.6 nA	1×10 ⁻³ %	24 %

Table S1. Photovoltaic characteristics of different Si/KCu $_7S_4$ NIR photodetectors.