Supporting Information

Synthesis of single crystalline twodimensional transition-metal phosphides via salt-templated method

Tianqi Li,^a Hongrun Jin,^a Zhun Liang,^b Liang Huang,^a Yucheng Lu,^a Huimin Yu,^a Zhimi Hu,^a Jiabin Wu,^a Bao Yu Xia,^c Guang Feng,^b Jun Zhou^a*

^aWuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

^bState Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.

^c Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.

* Correspondence author: jun.zhou@mail.hust.edu.cn

1. Experiment Details

Synthesis of 2D Co₂P. Firstly, Co(NO₃)₂·6H₂O (0.002 mol) was dissolved into ethanol (40 ml). The above precursor solutions were added to 500 g of KCl powder followed by drying at 60 °C with stirring. Secondly, (NH₄)₂HPO₄ (0.39 g) was dispersed in mixed solvent of deionized water (10 ml) and ethanol (10 ml) with some salt powders added to forbid dissolution of salt templates. The Co@KCl powders were covered with (NH₄)₂HPO₄ solution in the same way. The resulting mixture was transferred into alumina crucible which was placed at the center of tube furnace. Under the protection of Ar/H₂ atmosphere, the temperature was increased to 700 °C with the rate of 1 °C per minute and kept for 3 hours. After being cooled, the annealed product was repeatedly washed with deionized water to remove the salt templates. In order to prevent oxidation of the products in the washing process, N₂ was bubbled into deionized water constantly to exclude oxygen. The 2D Co₂P nanosheets were obtained by vacuum filtration. The resulting products were transferred into vacuum drying oven to dry overnight at 50 °C for further characterization.

Synthesis of 2D MoP₂. 2D MoP₂ was synthesized through an identical procedure but (NH₄)₆Mo₇O₂₄·4H₂O and NaCl were used as metal precursor and salt templates, respectively. Meanwhile, citric acid (0.004 mol) was dissolved into ethanol (50 ml) and the as-obtained solution was added to salt powders. The resulting mixture was preannealed at 500 °C in air before further annealed at 700 °C in the Ar/H₂ atmosphere.

Synthesis of 2D Ni₁₂P₅. The procedure was identical with the synthesis of 2D Co_2P , but Ni(NO₃)₂·6H₂O was used as metal precursor.

Synthesis of 2D WP₂. The procedure was identical with the synthesis of 2D MoP₂, but $(NH_4)_6H_2W_{12}O_4 \cdot nH_2O$ was used as metal precursor.

Synthesis of Co₂P nanoparticles. The Co₂P NPs are synthesized by the same method of 2D Co₂P without salt templates. In detail, we mixed Co(NO₃)₂·6H₂O solution and (NH₄)₂HPO₄ solution in the Co/P atom ratio of 2:1. After vacuum filtration, the precursors are annealed at 700 °C for 3 hours under the protection of Ar/H₂ atmosphere. The resulting products were transferred into vacuum drying oven

to dry overnight at 50 °C for further characterization.

Electrochemical measurements. Electrochemical measurements were evaluated by CHI 660E electrochemical workstation. The counter and reference electrodes selected were graphite rod and saturated calomel electrode (SCE), respectively. A glassy carbon electrode (GCE, 5 mm in diameter) covered by catalyst materials was used as the working electrode. The electrolyte was 0.5 M H₂SO₄ solutions. Typically, 5 mg 2D TMPs were suspended in mixed solvent of deionized water (200 μ l) and isopropyl alcohol (800 μ l), then 20 μ l Nafion solution (5.0 wt.%. Nafion in isopropyl alcohol) was added to the as-obtained solution to form a homogeneous ink assisted by sonication. 10 μ l of the ink was loaded onto GCE by a micropipette and dried in ambient temperature. Before measurements, the samples were repeatedly swept from 0.05 to 0.35 V (vs. RHE) in the electrolyte until a steady voltammogram curve was obtained. The LSV curves were scanned from 0 to -0.7 V (vs. RHE) at a scan rate of 5 mV s⁻¹. Electrochemical Impedance Spectroscopy (EIS) was measured at -30 mV (vs. RHE) with the AC voltage amplitude of 5 mV and the frequency range of 0.1-106 Hz.

Characterization. The morphology, microstructure and valence state of the samples were characterized by field-emission scanning electron microscope (FEI Nova 450 Nano), high-resolution transmission electron microscopy (FEI Titan G2 60-300), Atomic force microscope (Shimadzu), X-ray photoelectron spectrum (ESCALab250). The powder X-ray diffraction (X'Pert Pro, PANanalytical) measurements were taken at 40 kV accelerating voltage and a 40 mA current with Cu K α radiation. For the AFM measurements, the samples were dropped on SiO₂/Si and dried at room temperature.

2. Supplementary Notes

Supplementary Note 1: Growth mechanism of MoP₂

According to the growth mechanism, the lattice mismatch between (010) plane of MoP₂ (c-axis is 0.4984 nm) and (001) plane of NaCl (a-axis is 0.5620 nm) is 12% (Fig. 3d), which is against to the surface growth. However, the orthorhombic structure

of MoP₂ and large b axis take conducive to formation of 2D MoP₂ morphology, because thin layered morphology (Figure S3) usually has larger b axis than the bulk. Owing to atomic thin film of MoP₂ and the large lattice mismatch between MoP₂ and NaCl, there will be some lattice distortion in MoP₂ leading to no (020)/(040)/(060)/(080) peak exist in the mixture of MoP₂@NaCl XRD pattern even at slow scan (Figure S4). After removing the NaCl template, the MoP₂ exposes out (010) crystal plane caused by the nanosheets stack together.

Supplementary Note 2: Active sites calculation

The active sites calculation of Pt/C is based on CO stripping experiment.^{1,2} The oxidation peak at 0.78 V can be attributed to the CO stripping peak. The number of active sites in Pt/C was further calculated to 0.4 mmol/g.

In order to calculate the active sites of 2D Co₂P, we design a catalyst poisoning method. Firstly, we added KSCN to poison Pt/C catalyst. According to polarization curves, the onset potential of Pt/C shifted to -30 mV. Moreover, the under potential deposition of hydrogen on Pt is not clear. While it is difficult to assign the observed peaks to a given redox couple, the total number of active sites could be calculated from reported method. The total charge with removing electrochemical double layer capacitance has been integrated from CV curves. The number of active sites in Pt/C was calculated to 0.428 mmol/g which is close to the CO stripping method.

The active sites calculation of 2D Co_2P is based on integral of CV curves.³ The onset potential of 2D Co_2P for HER shifted to -80 mV. Similarly, the number of active sites could be calculated from integral of CV curves, which is 0.308 mmol/g for 2D Co_2P . The number of active sites of Co_2P nanoparticle is 0.165 mmol/g.

Supplementary Note 3: The calculation of TOF

The calculation of TOF is based on the following equation:

TOF=I/(2Fn)

where I is the current (A) during linear sweep measurement, F is the Faraday constant (C/mol), n is the number of active sites (mol). The factor 1/2 is based on the consideration that two electrons are required to form one hydrogen molecule.

3. Supplementary Figures:

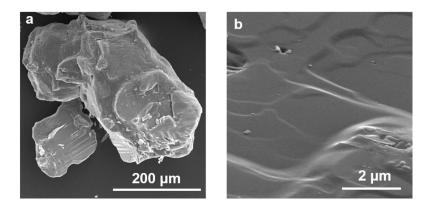


Figure S1. (a) and (b) The SEM images of KCl coating with 2D Co₂P.

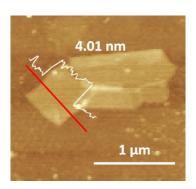
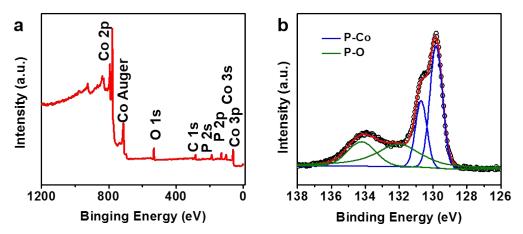



Figure S2. The AFM image of 2D Co₂P. The thickness of 2D Co₂P is 4 nm.

Figure S3. XPS spectra of Co_2P . Survey spectra (a) and P 2p (b). The peaks of P 2p are divided into four peaks, corresponding to P-Co 2p3/2 (129.8 eV), P-Co 2p1/2 (130.7 eV), P-O 2p1/2 (132.0 eV) and P-O 2p3/2 (134.2 eV).

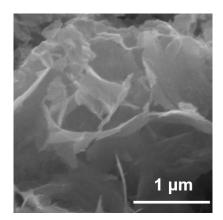
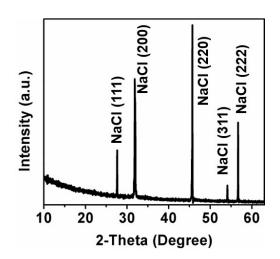



Figure S4. SEM image of 2D MoP₂.

Figure S5. XRD pattern of 2D MoP₂ on NaCl. All of the diffraction peaks belong to NaCl.

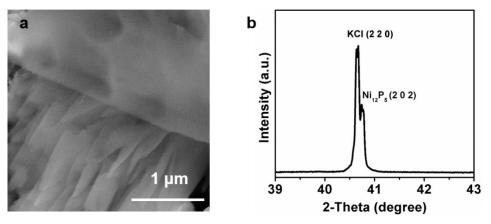
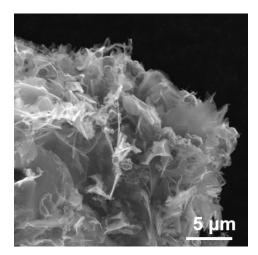
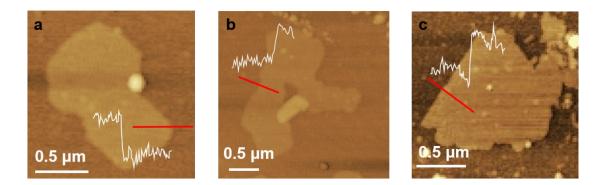
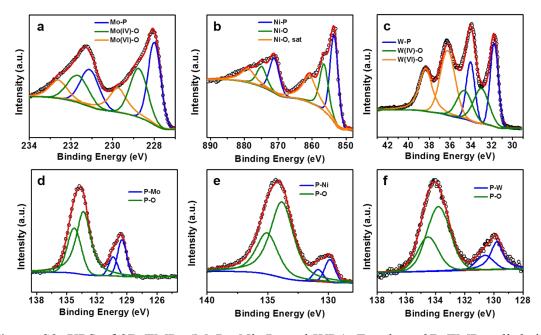


Figure S6. (a) The SEM images of 2D $Ni_{12}P_5$. (b) The XRD pattern of 2D $N_{12}P_5$ on KCl.

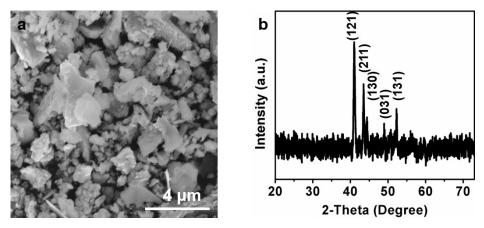
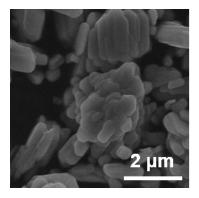
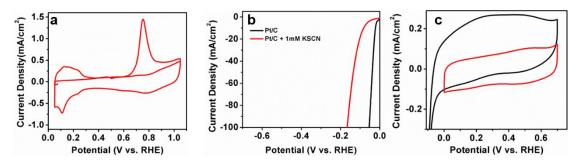
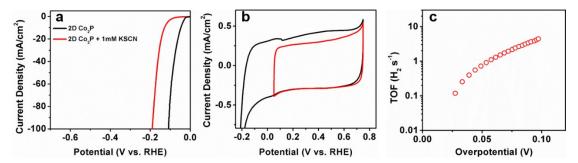
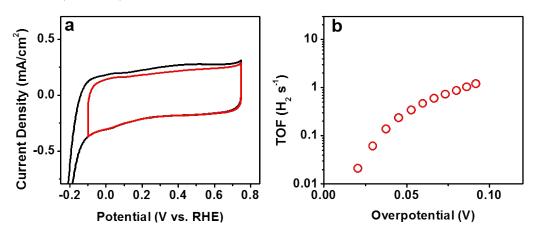

Figure S7. SEM image of 2D WP₂.

Figure S8. AFM images of 2D TMPs. According to the AMF images, the thickness of 2D MoP₂ (a), Ni₁₂P₅ (b) and WP₂ (c) is ~2.5 nm, ~ 1.8 nm and ~ 2.3 nm, respectively. Scale bar, 0.5 μ m.

Figure S9. XPS of 2D TMPs (MoP₂, Ni₁₂P₅ and WP₂). For these 2D TMPs, all their surface had metal-oxygen and metal-phosphorus bonds. In detail, the peaks of Mo-P bond (a), Ni-P bond (b) and W-P bond (c) could be analyzed by Mo 3d (228.0 eV for Mo $3d_{5/2}$, 231.2 eV for Mo $3d_{3/2}$), Ni 2p (853.6 eV Ni $2p_{3/2}$, 871.2 eV for Ni $2p_{1/2}$) and W 4f (31.78 eV for W $4f_{7/2}$, 34.08 eV for W $4f_{5/2}$), respectively. Analogous to Co₂P, MoP₂, Ni₁₂P₅ and WP₂ also have partial oxidization on the surface. We believe the oxidation layers of these 2D TMPs may help them stably disperse in water. The XPS spectra of P 2p. (d) The peaks of 2D MoP₂ are divided into four peaks, corresponding to P-Mo $2p_{3/2}$ (~129.5 eV), P-Mo $2p_{1/2}$ (~130.3 eV), P-O $2p_{1/2}$ (~133.3 eV) and P-O $2p_{3/2}$ (~134.2 eV). (e) The peaks of 2D N₁₂P₅ are divided into four peaks, corresponding to P-Mo $2p_{3/2}$ (~135.0 eV). (f) The peaks of 2D WP₂ are divided into four peaks, corresponding to P-Mo $2p_{3/2}$ (~135.0 eV). (f) The peaks of 2D WP₂ are divided into four peaks, corresponding to P-Mo $2p_{3/2}$ (~135.0 eV). (f) The peaks of 2D WP₂ are divided into four peaks, corresponding to P-Mo $2p_{3/2}$ (~135.0 eV). (f) The peaks of 2D WP₂ are divided into four peaks, corresponding to P-Mo $2p_{3/2}$ (~135.0 eV). (f) The peaks of 2D WP₂ are divided into four peaks, corresponding to P-Mo $2p_{3/2}$ (~135.0 eV). (f) The peaks of 2D WP₂ are divided into four peaks, corresponding to P-Mo $2p_{3/2}$ (~136.6 eV).

Figure S10. Co_2P synthesized on NaCl. According to SEM image (a) the morphology is particle instead of 2D nanosheet. (b) The XRD pattern of Co_2P synthesized on NaCl.


Figure S11. The SEM images of Co₂P nanoparticles.

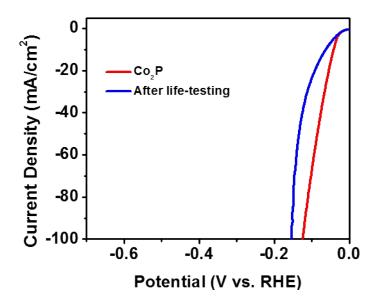

Figure S12. TOF calculation of Pt/C. (a) The CO stripping voltammetry of Pt/C in 0.5 M aq. H_2SO_4 . Stripping of a monolayer of CO in the first cycle. Following cycle after the stripping of CO. (b) The linear sweep voltammetry (LSV) curves of Pt/C before and after KSCN poisoning. (c) The cyclic voltammetry (CV) curves of poisoned Pt/C with hydrogen atom absorbed.

Figure S13. TOF calculation of 2D Co_2P . (a) The LSV curves of 2D Co_2P before and after KSCN poisoning. (b) The CV curves of poisoned 2D Co_2P with hydrogen atom absorbed. (c) The turnover frequency values of 2D Co_2P . The TOF of Co_2P is 0.77 s⁻¹ at -50 mV (vs. RHE).

Figure S14. TOF calculation of Co_2P particles. (a) The active sites calculation of Co_2P particles is similar to that of 2D Co_2P . (b) The TOF of Co_2P Particles is 0.31 s⁻¹ at - 50 mV (vs. RHE).

Figure S15. Durability test of 2D Co_2P . Durability test of 2D Co_2P is based on the polarization curves before and after 5000 potential cycles (50 mV/s) in 0.5 M H₂SO₄ solution from 0 V to 0.6 V (vs. RHE).

4. Supplementary Table:

	Overpotential (mV)	Tafel slope
	at 10 mA cm ⁻²	(mV dec ⁻¹)
This work	41	35
CoP ⁴	85	50
CoP ⁵	~120	46
Co ₂ P ⁶	~100	50
Co ₂ P ⁷	103	58
CoP/RGO ⁸	105	50
CoP ⁹	95	50
CoP ¹⁰	67	51
CoP ¹¹	56	44
CoP ¹²	253	73
Cu ₃ P ¹³	143	67
FeP ¹⁴	155	38
FeP ¹⁵	52	49
FeP ¹⁶	58	45
MoP S ¹⁷	64	50
MoP ¹⁵	51	45
Ni ₁₂ P ₅ ¹⁸	208	75
Ni ₁₂ P ₅ ¹⁹	107	63
Ni ₂ P ²⁰	172	62
Ni ₂ P ¹⁸	137	49
$N_{i5}P_4 \ ^{18}$	118	42
WP ²¹	130	69

Table S1. Summary of some recently reported transitional metal phosphides for HERelectrocatalysts in 0.5 M H_2SO_4 .

REFERENCES

- 1. H. A. Gasteiger, N. Markovic, P. N. Ross and E. J. Cairns, *J. Phys. Chem.*, 1994, **98**, 617-625.
- J. Mahmood, F. Li, S. M. Jung, M. S. Okyay, I. Ahmad, S. J. Kim, N. Park, H. Y. Jeong and J. B. Baek, *Nat. Nanotechnol.*, 2017, 12, 441-446.
- 3. D. Merki, S. Fierro, H. Vrubel and X. Hu, Chem. Sci., 2011, 2, 1262-1267.
- F. H. Saadi, A. I. Carim, E. Verlage, J. C. Hemminger, N. S. Lewis and M. P. Soriaga, J. Phys. Chem. C, 2014, 118, 29294-29300.
- 5. H. Yang, Y. Zhang, F. Hu and Q. Wang, *Nano Lett.*, 2015, 15, 7616-7620.
- 6. J. F. Callejas, C. G. Read, E. J. Popczun, J. M. McEnaney and R. E. Schaak, *Chem. Mater.*, 2015, **27**, 3769-3774.
- M. Zhuang, X. Ou, Y. Dou, L. Zhang, Q. Zhang, R. Wu, Y. Ding, M. Shao and Z. Luo, *Nano Lett.*, 2016, 16, 4691-4698.
- 8. L. Jiao, Y.-X. Zhou and H.-L. Jiang, Chem. Sci., 2016, 7, 1690-1695.
- 9. E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis and R. E. Schaak, *Angew. Chem. Int. Ed*, 2014, **53**, 5427-5430.
- 10. J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- C. Zhang, Y. Huang, Y. Yu, J. Zhang, S. Zhuo and B. Zhang, *Chem. Sci.*, 2017, 8, 2769-2775.
- 12. Z. H. Xue, H. Su, Q. Y. Yu, B. Zhang, H. H. Wang, X. H. Li and J. S. Chen, *Adv. Energy Mater.*, 2017, 7, 1602355.
- J. Tian, Q. Liu, N. Cheng, A. M. Asiri and X. Sun, *Angew. Chem. Int. Ed.*, 2014, 53, 9577-9581.
- 14. P. Jiang, Q. Liu, Y. Liang, J. Tian, A. M. Asiri and X. Sun, *Angew. Chem. Int. Ed.*, 2014, **53**, 12855-12859.
- S. Han, Y. Feng, F. Zhang, C. Yang, Z. Yao, W. Zhao, F. Qiu, L. Yang, Y. Yao, X. Zhuang and X. Feng, *Adv. Funct. Mater.*, 2015, 25, 3899-3906.
- Y. Liang, Q. Liu, A. M. Asiri, X. Sun and Y. Luo, ACS Cata., 2014, 4, 4065-4069.
- 17. J. Kibsgaard and T. F. Jaramillo, Angew. Chem. Int. Ed., 2014, 53, 14433-14437.
- Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang, D. Liu, W. Hu, D. Liu, Y. Liu and C. Liu, *J. Mater. Chem. A*, 2015, 3, 1656-1665.
- 19. Z. Huang, Z. Chen, Z. Chen, C. Lv, H. Meng and C. Zhang, ACS Nano, 2014, 8, 8121-8129.
- 20. T. Tian, L. Ai and J. Jiang, RSC Adv., 2015, 5, 10290-10295.
- 21. Z. Pu, Q. Liu, A. M. Asiri and X. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 21874-21879.