Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Material (ESI) for Nanoscale.

This journal is © The Royal Society of Chemistry 2018

Electronic Supporting Information

MoSe₂ Nanosheets/MoO₂ Nanobelts/Carbon Nanotubes Membrane as Flexible and Multifunctional Electrodes for Full Water Splitting in Acidic Electrolyte

L. J. Yang, a,b Y. Q. Deng, X. F. Zhang, H. Liu, a,c* and W. J. Zhou a,b*

- ^a Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, China
- ^b Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, 510006, P. R. China
- ^c State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, P. R. China
- * Corresponding author. E-mail: hongliu@sdu.edu.cn, eszhouwj@scut.edu.cn (W. Zhou)

Table S1. The comparison of $MoSe_2$ -based HER electrocatalysts reported in acid electrolyte.

electroryte.				
Catalysts	η _{onset} (mV vs. RHE)	$\eta_{10}(mV)$	Tafel slope (mV dec ⁻¹)	Reference
MoSe ₂ NSs/MoO ₂	□-23	97	69.4	This work
NBs/CNTs-M (3D				
electrode)				
MoSe ₂ film (3D electrode)	-200	>400	105-120	Nano Lett. 2013, 13, 1341
MoSe ₂ /carbon cloth (3D electrode)	-150	220	76	Sci. Rep. 2016, 6, 22516
CNT@MoSe ₂ (powder)	-70	178	58	Nanoscale, 2015, 7, 18595
MoSe ₂ on carbon fiber	-110	250	59.8	Nano Lett. 2013, 13, 3426
paper (3D electrode)				
MoSe ₂ /RGO (powder)	-50	150	69	J. Mater. Chem. A, 2014, 2,
				360
MoSe ₂ /carbon fiber	-104	179	62	ACS Appl. Mater.
aerogel (powder)				Interfaces 2016, 8, 7077
MoSe ₂ /grapheme (3D	-50	159	61	Small, 2015, 11, 414
electrode)				
Carbonized bacterial	-91	-	55	Small, 2017, 13, 1602866
cellulose/MoSe ₂ (3D				
electrode)				
MoSe ₂ /Mo core–shell	-89	166	34.7	Adv. Mater. 2016, 28, 9831
nanoscrews MoSe ₂ /Mo				
core-shell nanoscrews (3D				
electrode)				
MoSe ₂ -porous carbon	-40	-	65	Adv. Mater. Interfaces
fiber (powder)				2017, 1600825

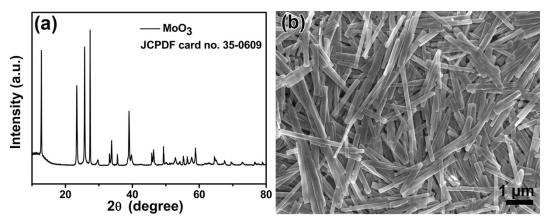
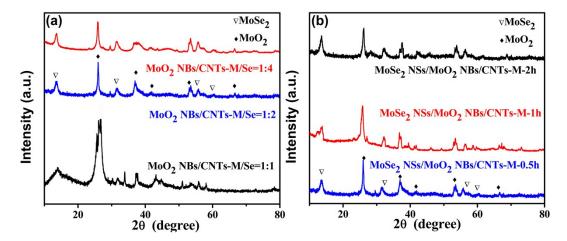



Fig. S1 XRD (a) and SEM image (b) of MoO₃ nanobelts.

Fig. S2 XRD of MoSe₂ NSs/MoO₂ NBs/CNTs-M obtained by changing amount of selenium (quality ratio of MoO₂ NBs/CNTs/Se-1:1 (black line), -1:2 (blue line), -1:4 and blue line (red line) (a) and holding at this quality ratio of 1:2 for various selenylation times (0.5 h, 1.0 h or 2.0 h) (b).

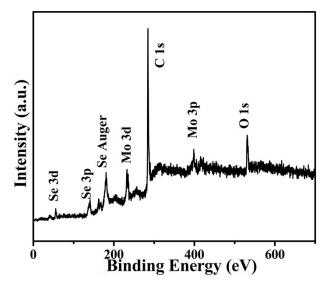
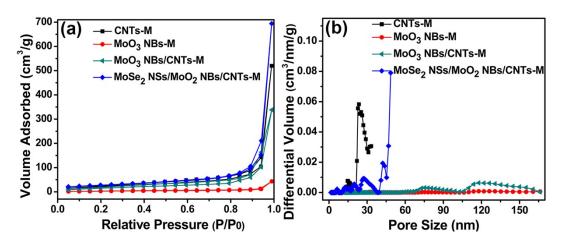
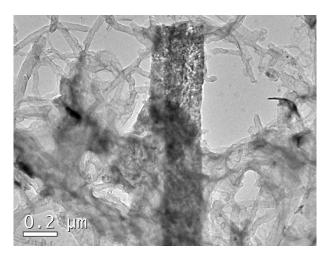
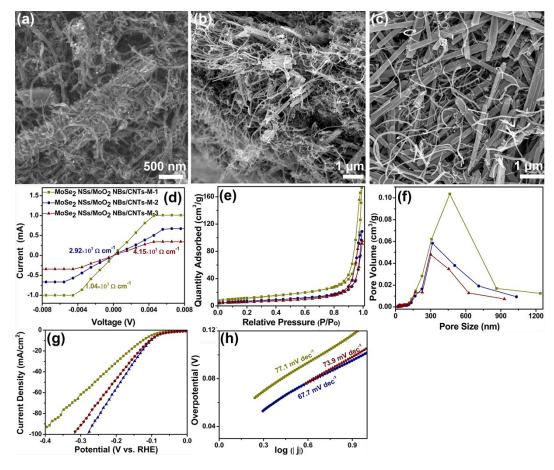
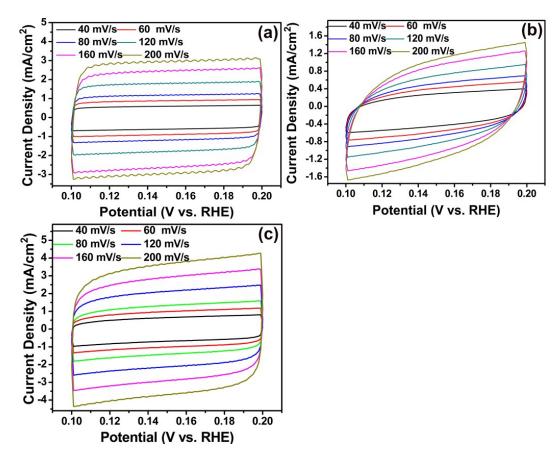
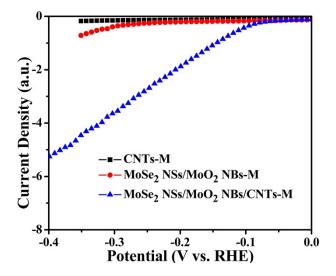
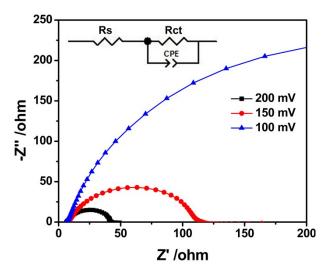



Fig. S3 The XPS survey spectra of the MoSe₂ NSs/MoO₂ NBs/CNTs-M.

Fig. S4 (a) Nitrogen adsorption-desorption isotherm and (b) pore size distributions of CNTs-M, MoO₃ NBs-M, MoO₃ NBs/CNTs-M, and MoSe₂ NSs/MoO₂ NBs/CNTs-M.


Fig. S5 TEM images of MoSe₂ NSs/MoO₂ NBs/CNTs-M.


Fig. S6 SEM images of (a) MoSe₂ NSs/MoO₂ NBs/CNTs-M-1, (b) MoSe₂ NSs/MoO₂ NBs/CNTs-M-2 and (c) MoSe₂ NSs/MoO₂ NBs/CNTs-M-3. (d) Current–voltage (I–V) characteristic, (e) Nitrogen adsorption-desorption isotherm, (f) Pore size distributions, (g) LSV curves and (h) according Tafel of MoSe₂ NSs/MoO₂ NBs/CNTs membrane derived from precursors regulated by mass ratio between MoO₃ NBs and CNTs, which were 1:1(MoSe₂ NSs/MoO₂ NBs/CNTs-M-1), 5:1(MoSe₂ NSs/MoO₂ NBs/CNTs-M-2), and 15:1(MoSe₂ NSs/MoO₂ NBs/CNTs-M-3), respectively.

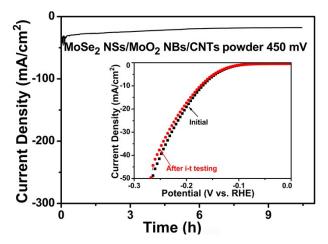

Fig. S7 The CVs curves under various scan rates of CNTs-M (a), MoSe₂ NSs/MoO₂ NBs-M (b) and MoSe₂ NSs/MoO₂ NBs/CNTs-M (c).

Fig. S8 Polarization curves of MoSe₂ NSs/MoO₂ NBs/CNTs-M, CNTs-M, MoSe₂ NSs/MoO₂ NBs-M. The current density (y axis) was obtained by normalizing the HER currents to the respective electrochemical surface area.

Fig. S9 Nyquist plots of MoSe₂ NSs/MoO₂ NBs/CNTs-M at various overpotentials (Inset shows equivalent circuit diagram).

Fig. S10 Chronoamperometric response for MoSe₂ NSs/MoO₂ NBs/CNTs powder (Inset shows Polarization curves of MoSe₂ NSs/MoO₂ NBs/CNTs powder before and after i-t testing).

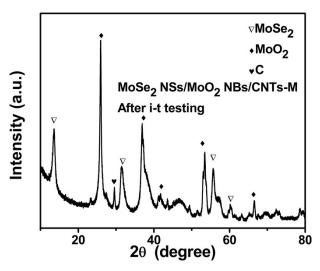


Fig. S11 The crystal structure of MoSe₂ NSs/MoO₂ NBs/CNTs-M after i-t testing.

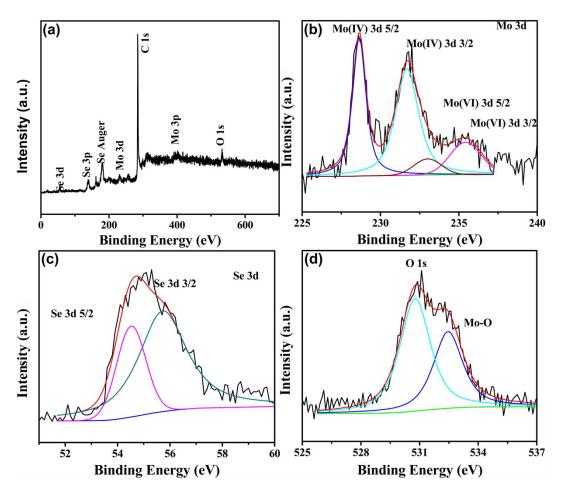
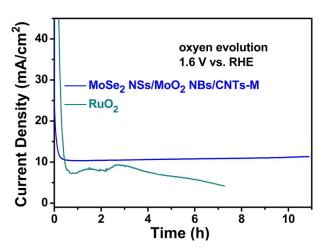



Fig. S12 The XPS of MoSe₂ NSs/MoO₂ NBs/CNTs-M after i-t testing.

 $\label{eq:Fig.S13} \textbf{Fig. S13} \ Chronoamperometric records of MoSe_2\,NSs/MoO_2\,NBs/CNTs-M \ and \ RuO_2$ in 0.5 M $H_2SO_4.$