Supplementary information

XPS experimental and DFT investigations of solid solutions Mo_{1-x}Re_xS₂ (0<x<0.20)

Svetlana A. Dalmatova ^{a,c}, Anastasiya D. Fedorenko^a, Lev N. Mazalov^{a,c}, Igor P. Asanov^{a,c}, Alexandra Yu. Ledneva^a, Mariya S. Tarasenko^a, Andrey N. Enyashin^b, Vladimir I. Zaikovskii^d and Vladimir E. Fedorov^{a,c}*

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Prospect Acad. Lavrentieva, 3, Novosibirsk 630090, Russia

^b Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Pervomayskaya Str., 91, Ekaterinburg 620990, Russia

^c Novosibirsk State University, Pirogova 2, Novosibirsk 630090 Russia

^{*d*} Boreskov Institute of Catalysis Siberian Branch of the Russian Academy of Sciences, Prospect Acad. Lavrentieva, 5, Novosibirsk 630090, Russia

* fed@niic.nsc.ru

Starting stoichiometry	EDS analysis
MoS ₂	Mo _{0.99} S ₂
$Mo_{0.95}Re_{0.05}S_2$	$Mo_{0.94}Re_{0.04}S_2$
$Mo_{0.9}Re_{0.1}S_2$	$Mo_{0.91}Re_{0.08}S_2$
$Mo_{0.85}Re_{0.15}S_2$	$Mo_{0.87}Re_{0.16}S_2$
$Mo_{0.80}Re_{0.20}S_2$	$Mo_{0.81}Re_{0.22}S_2$
ReS ₂	Re _{1.01} S ₂

Table S1. Synthetic stoichiometry and EDS elemental analysis data for the synthesized samples $Mo_{1-x}Re_xS_2$ (x = 0, 0.05, 0.10, 0.15 and 0.20)

Figure S1. Raman-spectra of $Mo_{1-x}Re_xS_2(x = 0, 0.05, 0.10 and 0.15)$. LA corresponds to secondorder process involving the longitudinal acoustic phonons.

Mo3d _{5/2}				S2p _{3/2}				Re4 <i>f</i> _{7/2}				
Compound	E _b , eV		S, %	Type of atom	E _b eV		S, %	Type of atom	E _b , eV		S, %	Type of atom
MoS ₂	(I)	229,6	<u>100</u>	Mo1 ^a	(0)	163,8	<u>3,3</u>	(S-S) ²⁻			-	
					(I)	162,4	<u>96,7</u>	S1 ^c				
Mo _{0,95} Re _{0,05} S ₂	(I)	229,6	<u>75,4</u>	Mo1	(I)	162,5	<u>69,3</u>	S1	(I)	41,4	100	Re1 ^e
	(11)	229,1	<u>24,6</u>	Mo2 ^b	(11)	162	<u>22,4</u>	S2 ^d				
					(111)	168,7	<u>7,1</u>	SO4 ²⁻				
					(IV)	161	<u>1,1</u>	$1T MoS_2$				
Mo _{0,9} Re _{0,1} S ₂	(I)	229,6	<u>54,3</u>	Mo1	(I)	162,5	<u>49,7</u>	\$1	(I)	41,4	100	Re1
	(11)	229,2	<u>45,7</u>	Mo2	(11)	161,9	<u>31,7</u>	S2				
					(111)	168,7	<u>15,5</u>	SO4 ²⁻				
					(IV)	161	<u>3,1</u>	1T MoS ₂				
Mo _{0,85} Re _{0,15} S ₂	(I)	229,6	55,1	Mo1	(0)	163,4	3,8	(S-S) ²⁻	(I)	41,2	60,1	Re1
	(11)	229,4	42,2	Mo2	(I)	162,4	68,1	S1	(11)	42,3	30,8	ReO ₂
	(111)	233	2,7	MoO _x	(11)	161,7	11,9	S2	(111)	41,6	9,1	Re2 ^f
					(111)	168,5	4,4	SO42-				
					(IV)	161,2	9,3	1T MoS₂				
					(∨)	166,6	2,5	SO ₃ ²⁻				
Mo _{0,8} Re _{0.2} S ₂	(I)	229,6	57,3	Mo1	(I)	162,3	85	S1	(I)	41,4	63,8	Re1
	(11)	229,3	40,5	Mo2	(11)	161,4	4,2	S2	(11)	42,6	7,3	ReO2
	(111)	233,3	2,2	MoO _x	(111)	168	10,8	SO4 ²⁻	(111)	41,8	28,9	Re2
ReS ₂			-		(I)	162,6	54,3	S1	(I)	42,1	84,3	Re1
					(11)	161,9	36,9	ReS2 metal	(11)	43,2	2,9	ReO ₂
					(111)	168,9	8,8	SO ₄ ²⁻	(IV)	41,5	12,8	ReS2 metal

Table S2. The values of the binding energies and integral intensities for MoS_2 , ReS_2 and $Mo_{1-x}Re_xS_2$ solid solutions, x= 0.05, 0.1, 0.15, 0.2.

Figure S3. C1s (a) and O1s (b) XPS spectra of $Mo_{1-x}Re_xS_2$

				1					
	01s		-	C1s					
Compound	d E _b , eV		S, %	Type of	Ε _b , ε	eV	S, %	Type of	
				atom				atom	
MoS ₂	(I) O1s	532.4	100	C-0	(I) C1s	284.6	84,6	C-C	
					(II) C1s	286.1	15,4	C-0	
Mo _{0.95} Re _{0.05} S ₂	(I) O1s	531,9	78,1	C-0	(I) C1s	<u>2</u> 84.3	100	C-C	
	(II) O1s	533.3	21,9	SO42-					
Mo _{0.9} Re _{0.1} S ₂	(I) O1s	531,8	80,3	C-0	(I) C1s	284.2	100	C-C	
	(II) O1s	533.3	19,7	SO42-					
Mo _{0,85} Re _{0.15} S ₂	(I) O1s	531,1	78,2	C-0	(I) C1s	284.5	100	C-C	
	(II) O1s	532,6	21,8	SO42-					
Mo _{0,8} Re _{0.2} S ₂	(I) O1s	531,3	82,4	C-0	(I) C1s	284,2	100	C-C	
	(II) O1s	533,0	17,6	SO42-					
ReS2	(I) O1s	532,0	80,1	C-0	(I) C1s	284.6	81,9	C-C	
	(II) O1s	533.5	19,9	SO42-	(II) C1s	286.9	18,1		
ReS2	(I) 01s (II) 01s	532,0 533.5	80,1 19,9	C-O SO4 ²⁻	(I) C1s (II) C1s	284.6 286.9	81,9 18,1	C-C	

Table S3. The values of the binding energies E_b and integral intensities S of the C1s and O1s XPS spectra

The S2*p* (0) component appearing in pure MoS₂ and associated with the formation of defect structures or S₂²⁻groups disappears in the samples after doping. The distance between S²⁻(S(I)) and (S-S)²⁻(S(O)) is in good agreement with literature [1]. In addition, S2*p* (~ 1%) (IV) component appears in the S2*p* spectrum after doping with rhenium atoms. This component can be considered as contribution of structural defects or disordered structure close to the metastable 1T-MoS₂ octahedral configuration locally formed during doping. Since rhenium disulfide crystallizes in another structural type than MoS₂, the replacement of Mo by Re in the MoS₂ lattice may lead to the destabilization of the 2H-MoS₂ phase. Also, S2*p* (III) component corresponding to SO₄²⁻ appears after doping. We suppose that SO₄²⁻ functionalizes the edges of the MoS₂ layers [2]. In the sample with x=0.15, a small amount of SO₃²⁻, ReO₂ and [3], MoO_x, were observed (S2*p*(V)), which is caused by the oxidation of samples in atmospheric environment [4].

- Lince, J.R., et al., Chemical Effects of Ne+ Bombardment on the MoS₂(0001) Surface Studied by High-Resolution Photoelectron-Spectroscopy. Surface Science, 1989. 210(3): p. 387-405.
- Krasnov, A.P., et al., *Effect of particle size and composition of powdered nanocrystalline molybdenum disulfide on its tribological behavior*. Journal of Friction and Wear, 2014.
 35(4): p. 330-338.
- Aliaga, J.A., et al., Synthesis of highly destacked ReS2 layers embedded in amorphous carbon from a metal-organic precursor. Journal of Non-Crystalline Solids, 2016. 447: p. 29-34.
- Santos, L.V., et al., *Diamond-like-carbon and molybdenum disulfide nanotribology* studies using atomic force measurements. Diamond and Related Materials, 2001. 10(3-7): p. 1049-1052.

Figure S4. The formations energies ΔH_{mix} (in eV/Re-atom) for the Mo_{1-x}Re_xS₂ solid solutions as a function of the impurity content *x* and the distribution of impurity atoms. The results were obtained after DFTB calculations using the 10*a*×10*a* supercell of MoS₂ layer. Mo, S and Re atoms are painted in red, yellow and black, respectively.

Figure S5. Band structure and densities-of-states (DOS) for the $Mo_{1-x}Re_xS_2$ (x \approx 0.1) solid state solutions with equidistant single Re atoms (a), with dimer-like (b) or rhombus-like cluster of Re atoms (c). Total DOS is depicted as full black line, valent Mo4*d*- and Re5*d*-states are painted in blue and red, respectively. DFT calculations.

Figure S6. Magnetic susceptibility of a) MoS_2 , b) $Mo_{0.9}Re_{0.1}S_2$ and c) $Mo_{0.85}Re_{0.15}S_2$

Figure S7. Nanoparticle containing two disulfide layers in contact with an edge of a wider platelet.

Figure S8. HRTEM-images of a thin layered particle of the $Mo_{0.85}Re_{0.15}S_2$ sample with inclusions (oriented along the [001] direction) obtained at different defocusings OL.

Figure S9. Schematic representation of the substitution of molybdenum with rhenium, accompanied by the formation of 4-atomic clusters ([001] projection).

Figure S10. Series of simulated HRTEM images for a selected area for monolayer MoS_2 with 4 substituted Re atoms linked in cluster. From left to right, the Δ f changes from 43 nm to 103 nm with an increment of 10 nm.