

SUPPLEMENTARY INFORMATION

**Sulfonate-ended carbosilane dendrimers with a flexible scaffold cause
inactivation of HIV-1 virions and gp120 shedding**

Daniel Sepúlveda-Crespo^{a,b,c,d}, Francisco J. de la Mata^{d,e}, Rafael Gómez^{d,e}, and M^a A. Muñoz-Fernández^{*a,b,c,d}

^a Sección Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid 28007, Spain.

^b Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain.

^c Spanish HIV HGM Biobank, Madrid 28007, Spain.

^d Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain

^e Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares 28805 Madrid, Spain.

* Corresponding author

M^a Ángeles Muñoz-Fernández

Immunology Section. Laboratorio InmunoBiología Molecular

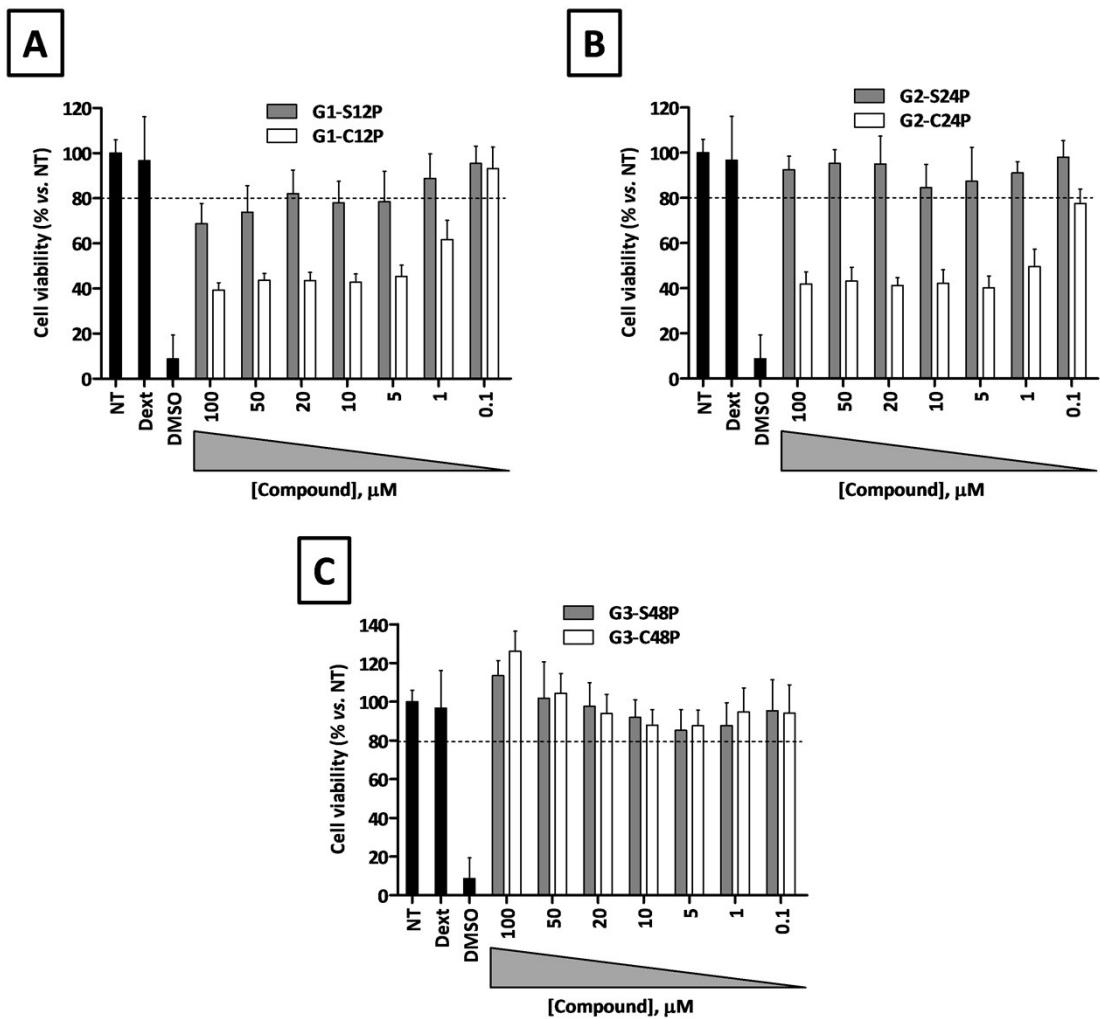
Hospital General Universitario Gregorio Marañón.

Spanish HIV HGM Biobank. IiSGM. CIBER-BBN.

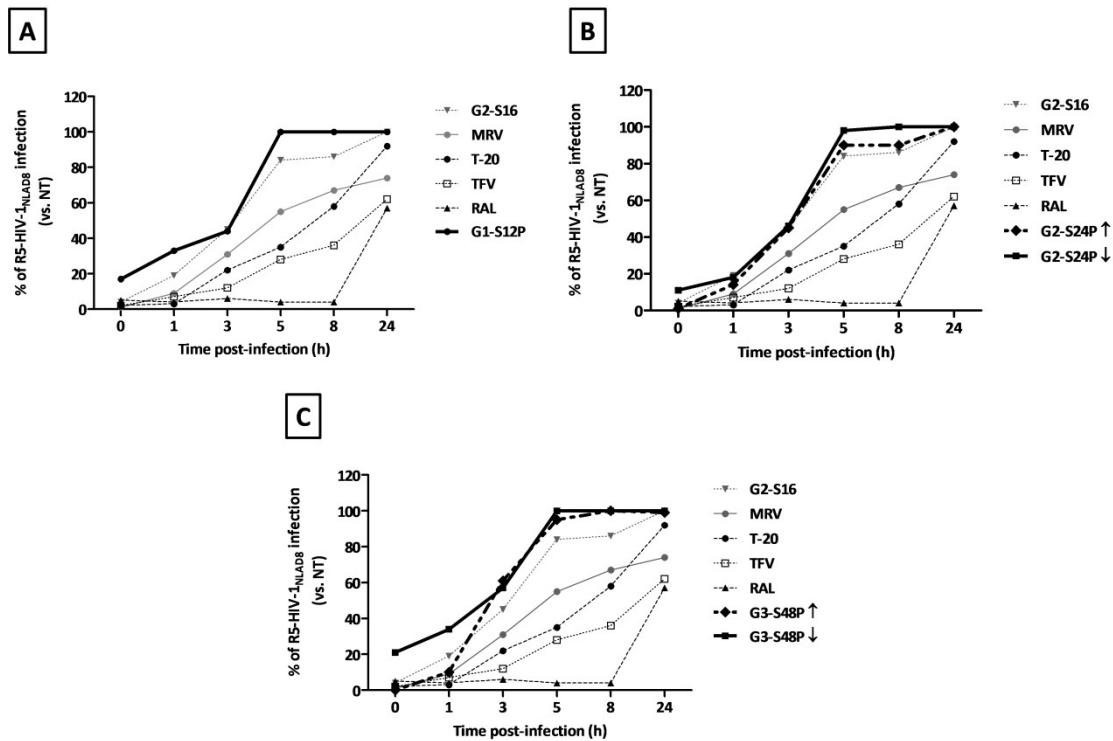
C/Dr. Esquerdo 46, 28007 Madrid, Spain. Telephone: 915 868 565

e-mail: mmunoz.hgugm@gmail.com and mmunoz.hgugm@salud.madrid.org

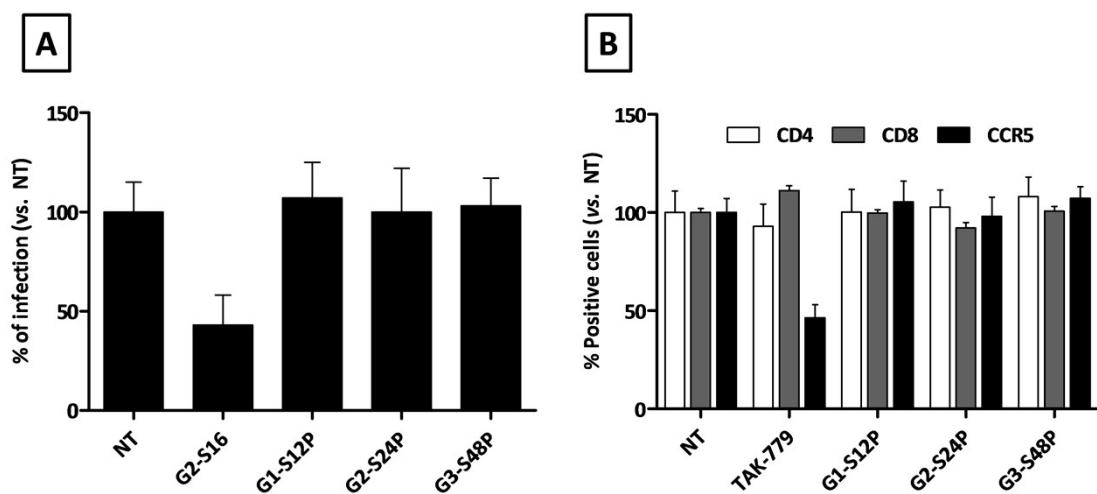
Supplementary Table 1 Chemical and structural characteristics of polyanionic carbosilane dendrimers with a polyphenolic core


Dendrimer	Molecular Formula	Mw (g/mol) ^a	G ^b	SG ^c	NSG ^d
G1-S12P	C ₉₃ H ₁₉₂ N ₆ Na ₁₂ O ₃₉ S ₁₂ Si ₉	2,932.0	1	Sulfonate	12
G2-S24P	C ₁₈₉ H ₄₀₂ N ₁₂ Na ₂₄ O ₇₅ S ₂₄ Si ₂₁	5,954.4	2	Sulfonate	24
G3-S48P	C ₃₈₁ H ₈₂₂ N ₂₄ Na ₄₈ O ₁₄₇ S ₄₈ Si ₄₅	11,999.2	3	Sulfonate	48
G1-C12P	C ₁₀₅ H ₁₉₂ N ₆ Na ₁₂ O ₂₇ Si ₉	2,499.3	1	Carboxylate	12
G2-C24P	C ₂₁₃ H ₄₀₂ N ₁₂ Na ₂₄ O ₅₁ Si ₂₁	5,084.2	2	Carboxylate	24
G3-C48P	C ₄₃₁ H ₈₂₆ N ₂₄ Na ₄₈ O ₉₉ Si ₄₅	10,296.6	3	Carboxylate	48

^a Mw: Molecular weight


^b G: Number of generations according to the number of repeated layers with branching units from silicon atoms

^c SG: Surface groups


^d NSG: Number of surface groups

Supplementary Figure 1 Cytotoxicity associated to polyanionic carbosilane dendrimers in TZM.bl cells at 48 h post-loading using MTT assay. The cells were loaded with increased concentrations of dendrimers (ranged from 0.1 to 100 μ M) from (A) first, (B) second or (C) third generation, or treated with 10 μ M dextran (innocuous control) or 10% of DMSO (control of cell death). The percent of cell viability was calculated as optical density of treated condition/non-treated control (NT) x 100. The 80% of viability was set as limit of toxicity. Data are represented as mean \pm SD of three experiments performed in triplicate. Abbreviations: Dext = dextran; DMSO = dymethyl sulfoxide.

Supplementary Figure 2 Time-of-drug-addition in the HIV-1 lifecycle of selected polyanionic carbosilane dendrimers. **(A)** G1-S12P (1 μ M), **(B)** G2-S24P at high (100 μ M, \uparrow) and low (0.1 μ M, \downarrow) concentrations, **(C)** G3-S48P at high (100 μ M, \uparrow) and low (0.1 μ M, \downarrow) concentrations, or G2-S16 (10 μ M), MRV (1 μ M), T-20 (20 μ M), TFV (1 μ M) or RAL (0.1 μ M) as controls were added upon R5-HIV-1_{NLAD8} infection (20 ng p24/10⁶ cells) or at various points post-infection. Luciferase activity was measured at 48 h post-infection *vs.* non-treated control. Data represent the mean \pm SD of one experiment performed in duplicate. Abbreviations: MRV = maraviroc; RAL = raltegravir; T-20 = enfuvirtide; TFV = tenofovir.

Supplementary Figure 3 Cell-drug interactions and interaction of selected polyanionic carbosilane dendrimers with cellular surface markers. **(A)** TZM.bl cells were exposed to G1-S12P (1 μ M), G2-S24P (0.1 μ M) or G3-S48P (0.1 μ M), or G2-S16 (10 μ M) as a control for 1 h, extensively washed and infected with R5-HIV-1_{NLAD8} (20 ng p24/10⁶ cells). Luciferase activity was measured at 48 h post-infection *vs.* non-treated control (NT). **(B)** PHA-activated PBMCs were exposed to G1-S12P (1 μ M), G2-S24P or G3-S48P (0.1 μ M), or TAK-779 (0.1 μ M) as a CCR5 antagonist control for 24 h, and levels of CD4, CD8, and CCR5 at the cellular surface were followed by flow cytometry *vs.* NT. Data represent the mean \pm SD of three individual experiments performed in triplicate. Abbreviations: PBMCs = peripheral blood mononuclear cells; PHA = phytohemagglutinin.