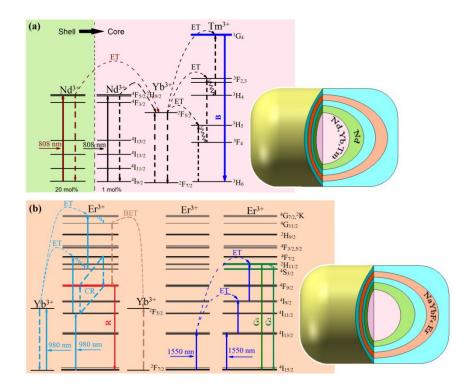
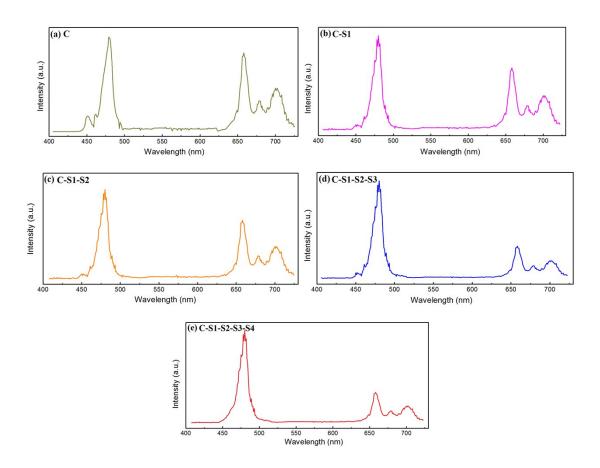

Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

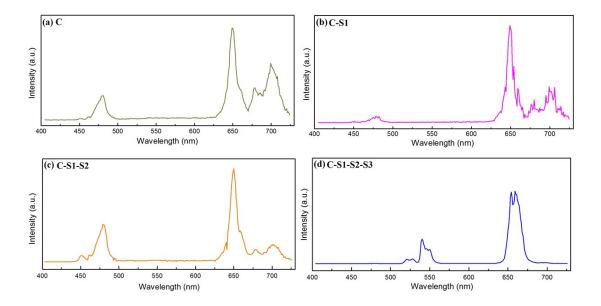
## **Supplementary Information for**

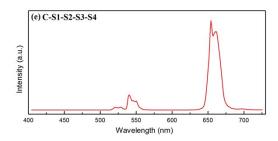

Three-primary-color up-conversion luminescence from single trisensitized  $NaYF_4$  nanocrystals

Xiumei Yin, Hong Wang, Ying Tian\*, Mingming. Xing, Yao Fu, Xixian Luo\*

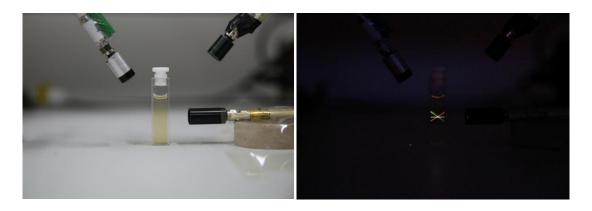

(Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China)




**Figure S1.** XRD patterns of (a) NaYF<sub>4</sub>: Nd, Yb, Tm and (b) NaYF<sub>4</sub>: Nd, Yb, Tm@ NaYF<sub>4</sub>: Nd samples, which suggest the crystal structure of β-NaYF<sub>4</sub>. (c) stander cards of β-NaYF<sub>4</sub> (PDF# 16-0334). (d) Electron diffraction of as-prepared C-S1-S2-S3-S4 UC nanoparticles indicates the β-NaYF<sub>4</sub> crystals.




**Figure S2.** UC luminescence mechanisms of NaYF<sub>4</sub>-based core-shell nanoparticles. (a) The C and S1 layers exhibit blue emission ( ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ ) via energy transfer (ET) processes of Nd<sup>3+</sup> $\rightarrow$ Yb<sup>3+</sup> $\rightarrow$ Tm<sup>3+</sup> under 808 nm excitation. (b) The S3 layer of NaYbF<sub>4</sub>: Er<sup>3+</sup> presents individual red (marked as R), and green (marked as G1, G2) luminescence. Cross relaxation (CR) between Er<sup>3+</sup> ions and back energy transfer (BET) from Er<sup>3+</sup> $\rightarrow$ Yb<sup>3+</sup> ions lead to red emission excited at 980 nm. While at 1550 nm excitation, continuous absorption of three photons or ET processes between Er<sup>3+</sup> ions produce green emission.




**Figure S3.** UC luminescence spectra of (a) C, (b) C-S1, (c) C-S1-S2, (d) C-S1-S2-S3, (e) C-S1-S2-S3-S4 UC nanoparticles under 808 nm excitation. The blue emission is enhanced with the shell coating at excitation of 808 nm.





**Figure S4.** UC luminescence spectra of (a) C, (b) C-S1, (c) C-S1-S2, (d) C-S1-S2-S3, (e) C-S1-S2-S3-S4 UC nanoparticles under 980 nm excitation. The blue emission is suppressed with the shell coating at excitation of 980 nm.



**Figure S5.** Photographs of three-primary-color luminescence from as-prepared multilayer  $\beta$ -NaYF<sub>4</sub> nanoparticles. (Canon EOS 5D Mark III, Tv=1:10, Len: EF24-70mm f/2.8L II USM, Av= 2.8)



**Figure S6.** An example of camera images that demonstrates tunable UC luminescence measurement of multilayer  $\beta$ -NaYF<sub>4</sub> nanoparticles. (Canon EOS 5D Mark III, Tv=1:10, Len: EF24-70mm f/2.8L II USM, Av= 2.8).

