Electronic Supplementary Information

Metal organic framework-derived CoPS/N-doped carbon for efficient electrocatalytic hydrogen evolution

Yuzhi Li,^a Siqi Niu,^a Dmitrii Rakov,^a Ying Wang,^a Miguel Cabán-Acevedo,^b Shijian Zheng,^c Bo Song^{*d} and Ping Xu^{*a}

^{a.} MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Har-bin Institute of Technology, Harbin 150001, China. Email: pxu@hit.edu.cn

^{b.} Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA.

^{c.} Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.

^{d.} Academy of Fundamental and Interdisciplinary Sciences, Department of Physics, Harbin Institute of Technology, Harbin 150001, China. Email: songbo@hit.edu.cn

Supplementary Figures and Tables

Fig. S1. Raman spectra of the Co/N-C, CoPS/N-C, CoP₂/N-C and CoS₂/N-C nanocomposites. (a) Raman feature of CoPS/N-C nanocomposites in the region of 200-500 cm⁻¹, where two typical peaks at ~322 and 427 cm⁻¹ correspond to the characteristic active modes of vibration (E_g) and in-phase stretching (A_g) for the chalcogenide dumbbells in a pyrite crystal lattice. (b) Raman feature in the region showing the D band and G band of carbon materials. The intensity ratios of D band and G band (I_D/I_G) are almost identical, an indication that the graphitization degrees of the carbon materials in these nanocomposites are similar for the Co/N-C, CoPS/N-C, CoP₂/N-C and CoS₂/N-C nanocomposites.

Fig. S2. Survey XPS spectrum (a), and high-resolution XPS spectra of (b) C 1s, (c) N 1s, (d) Co 2p, (e) P 2p, (f) S 2p and (g) O 1s levels of CoPS/N-C nanocomposites.

Fig. S3. SEM images of (a) $CoP_2/N-C$ and (b) $CoS_2/N-C$ nanocomposites. The nanocomposites inherited the overall polyhedron-like morphology of ZIF-67 and have nanoparticle formation at the surface of $CoP_2/N-C$ and $CoS_2/N-C$ nanocomposites.

Fig. S4. STEM image of a single Co/N-C particle and the corresponding EDX elemental mapping of C, N, O and Co elements.

Fig. S5. STEM image of a single CoPS/N-C particle and the corresponding EDX elemental mapping of C, N, O, Co, P and S.

Fig. S6. Particle size distributions of the Co/N-C (a), $CoP_2/N-C(b)$, $CoS_2/N-C$ (c) and CoPS/N-C(d) suspended in water as determined by dynamic light scattering (DLS). Here, measured particle size distributions of Co/N-C, $CoP_2/N-C$, $CoS_2/N-C$ and CoPS/N-C are 256.4 nm, 180 nm, 191.2 nm and 169.4 nm respectively.

Fig. S7. N₂ adsorption-desorption isotherms of ZIF-67, Co/N-C and CoPS/N-C nanocomposites.

Fig. S8. Thermogravimetric curve of CoPS/N-C nanocomposites in N₂ atmosphere.

Fig. S9. XRD patterns of the CoPS/N-C nanocomposites prepared through a vacuum annealing process for 3 h and 10 h. CoPS phase can be formed in this shorter time annealing process, but the crystallinity is relatively low.

Fig. S10. Polarization curves after iR correction of CoPS/N-C nanocomposites prepared from different time periods (3 h, 10 h, and 72 h) for HER catalysis in 0.5 M H₂SO₄, in comparison to Pt/C.

Fig. S11. Polarization curves after iR correction of CoPS/N-C nanocomposites prepared from different time periods (1 d, 2 d, 3 d, and 4 d) for HER catalysis in 0.5 M H_2SO_4 , in comparison to Pt/C.

Fig. S12. Cyclic voltammetry curves of the Co/N-C, $CoP_2/N-C$, $CoS_2/N-C$ and CoPS/N-C samples under different scan rates, in the region of 0.073-0.173V vs. RHE. These data were used to present the plots showing the extraction of the C_{dl} for different samples shown in Fig. 3c in the main text.

Fig. S13. Polarization curves of CoPS/C Nanocomposites as an HER catalyst in 0.5 M H_2SO_4 at the 1st cycle and 1000th cycle. After continuous cyclic voltammetry (CV) for 1000 cycles at a scan rate of 50 mV s⁻¹, the polarization curve for the CoPS/N-C shows a very slight change, where η_{10} can still be maintained at -85 mV vs RHE.

Fig. S14. Raman spectra of CoPS/N-C nanocomposites before and after 1,000 cycles of HER in 0.5 M H_2SO_4 solution. No obvious structural or compositional change during the course of HER in acidic medium, which confirms the high stability of CoPS/N-C nanocomposites for HER catalysis.

Fig. S15. Stability of CoPS/N-C nanocomposites as an HER catalyst in acidic media. Timedependent current density under a constant overpotential of 80 mV vs RHE. The current density exhibits negligible degradation even after a long period of 16 h.

Fig. S16. SEM images of CoPS/N-C nanocomposites after it test. No obvious change in the size and morphology of the CoPS/N-C after the *i*-*t* test could be seen, confirming the robustness as a highly active HER electrocatalyst.

Fig. S17. Polarization curves of CoPS/C Nanocomposites as an HER catalyst in 1 M KOH at the 1st cycle and 1000th cycle. After continuous cyclic voltammetry (CV) for 1000 cycles at a scan rate of 50 mV s⁻¹, the polarization curve for the CoPS/N-C shows a very slight change, where η_{10} can still be maintained at -150 mV vs RHE.

Fig. S18. Raman spectra of CoPS/N-C nanocomposites before and after 1,000 cycles of HER in 1 M KOH solution.

	element contents / (at%)						
Sample	С	Ν	0	Со	Р	S	
CoPS/N-C	56.71	4.91	7.02	10.9	10.18	10.28	

Table S1 Summary of the elemental contents of CoPS/N-C nanocomposites.

Table S2 BET surface areas and adsorption total pore volumes of ZIF-67, Co/N-C and CoPS/N-Cnanocomposites.

Sample	BET surface area	Pore volume	
	(m² g-1)	(cm ³ g ⁻¹)	
ZIF-67	1493.08	0.77	
Co/N-C	317.21	0.28	
CoPS/N-C	69.02	0.13	

Table S3 Comparative characteristics of HER activity on different transition metal-based catalysts

 in acidic and alkaline media.

	0.5 N	I H₂SO₄	1 M KOH		
Catalyst	η ₁₀ (mV <i>vs</i> RHE)	Tafel slope (mV dec⁻¹)	η ₁₀ (mV <i>vs</i> RHE)	Tafel slope (mV dec⁻¹)	ref.
CoPS/N-C	80	68	148	78	This work
Co-P/NC			191	51	1
CoP hollow	159	59			2
polyhedron					
CoP particles	355	77			2
CoP NRAs	181	69			3
CoP/rGO-400	105	50	150	38	4
CoP@BCN	87	46	215	25	5
CoP-CNTs	139	52			6
CoP CPHs	133	51			7
CoP-N-C-400	91	42			8
CoP ₃ CPs	78	53	124	88	8
Ni-P	110	73			9
Ni ₂ P	172	62			10
Fe _x P@NPC	227	81			11
FeP@PC	52	49			12
MoP@PC	47	45			12
MoP/SN-650	104	45			13
MoP@PC	153	66			14
MoS ₂ @TiO ₂	340	81			15
NiS-100 nm			94	139	16
NiS-300 nm			115	131	
NiS-600 nm			148	141	
CoSe ₂ @DC	132	82			17
MoC _x	142	53	151	59	18
Ni-Co-P			150	60.1	19
NiCoP			133	68.6	20
$Co_{0.38}Fe_{0.62}P$	107	60	124	78	21
$Co_{0.59}Fe_{0.41}P$	72	52	92	72	21
Co _{0.71} Fe _{0.29} P	98	53	111	77	21
Zn _{0.30} Co _{2.70} S ₄	80	47.5	85	60	22
NiPS3	530	56			23
CoPS3	580	84			23
FePS3	860	200			23

- 1. B. You, N. Jiang, M. Sheng, S. Gul, J. Yano and Y. Sun, *Chemistry of Materials*, 2015, **27**, 7636-7642.
- 2. M. Liu and J. Li, ACS Appl Mater Interfaces, 2016, **8**, 2158-2165.
- 3. L. Li, X. Li, L. Ai and J. Jiang, *RSC Adv.*, 2015, **5**, 90265-90271.
- 4. L. Jiao, Y.-X. Zhou and H.-L. Jiang, *Chem. Sci.*, 2016, **7**, 1690-1695.
- 5. H. Tabassum, W. Guo, W. Meng, A. Mahmood, R. Zhao, Q. Wang and R. Zou, *Advanced Energy Materials*, 2017, **7**, 1601671.
- 6. C. Wu, Y. Yang, D. Dong, Y. Zhang and J. Li, *Small*, 2017, **13**.
- 7. M. Xu, L. Han, Y. Han, Y. Yu, J. Zhai and S. Dong, J. Mater. Chem. A, 2015, 3, 21471-21477.
- 8. T. Wu, M. Pi, X. Wang, D. Zhang and S. Chen, *Phys. Chem. Chem. Phys.*, 2017, **19**, 2104-2110.
- 9. X.-Y. Yu, Y. Feng, B. Guan, X. W. Lou and U. Paik, *Energy Environ. Sci.*, 2016, **9**, 1246-1250.
- 10. M. Ledendecker, S. Krick Calderon, C. Papp, H. P. Steinruck, M. Antonietti and M. Shalom, *Angew Chem Int Ed Engl*, 2015, **54**, 12361-12365.
- 11. Y. Cheng, J. Guo, Y. Huang, Z. Liao and Z. Xiang, *Nano Energy*, 2017, **35**, 115-120.
- 12. S. Han, Y. Feng, F. Zhang, C. Yang, Z. Yao, W. Zhao, F. Qiu, L. Yang, Y. Yao, X. Zhuang and X. Feng, *Advanced Functional Materials*, 2015, **25**, 3899-3906.
- 13. M. A. R. Anjum and J. S. Lee, *ACS Catalysis*, 2017, **7**, 3030-3038.
- 14. J. Yang, F. Zhang, X. Wang, D. He, G. Wu, Q. Yang, X. Hong, Y. Wu and Y. Li, *Angew Chem Int Ed Engl*, 2016, **55**, 12854-12858.
- 15. B. Ma, P. Y. Guan, Q. Y. Li, M. Zhang and S. Q. Zang, *ACS Appl Mater Interfaces*, 2016, **8**, 26794-26800.
- 16. X. Y. Yu, L. Yu, H. B. Wu and X. W. Lou, *Angew Chem Int Ed Engl*, 2015, **54**, 5331-5335.
- 17. M. Jiang, Y. J. Li, Z. Y. Lu, X. M. Sun and X. Duan, *Inorg. Chem. Front.*, 2016, **3**, 630-634.
- 18. H. B. Wu, B. Y. Xia, L. Yu, X. Y. Yu and X. W. Lou, *Nat Commun*, 2015, 6, 6512.
- 19. Y. Feng, X. Y. Yu and U. Paik, *Chem Commun (Camb)*, 2016, **52**, 1633-1636.
- 20. Y. Li, H. Zhang, M. Jiang, Y. Kuang, X. Sun and X. Duan, *Nano Research*, 2016, **9**, 2251-2259.
- 21. J. Hao, W. Yang, Z. Zhang and J. Tang, *Nanoscale*, 2015, **7**, 11055-11062.
- 22. Z. F. Huang, J. Song, K. Li, M. Tahir, Y. T. Wang, L. Pan, L. Wang, X. Zhang and J. J. Zou, *J Am Chem Soc*, 2016, **138**, 1359-1365.
- 23. C. C. Mayorga-Martinez, Z. Sofer, D. Sedmidubsky, S. Huber, A. Y. Eng and M. Pumera, ACS Appl Mater Interfaces, 2017, **9**, 12563-12573.