Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Enhanced exciton emission behaviors and tunable band gap of ternary W $(S_x Se_{1-x})_2$ monolayer: Temperature dependent optical evidence and first-principles calculations

Huimin Sun,^a Junyong Wang,^a Fang Wang,^a Liping Xu,^a Kai Jiang,^a Liyan Shang,^a Zhigao Hu,^{*,a,b} and Junhao Chu^a

^a Key Laboratory of Polar Materials and Devices (MOE) and Technical Center for Multifunctional

Magneto-Optical Spectroscopy (Shanghai), Department of Electronic Engineering, East China Normal University, Shanghai 200241, China

^b Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

*Author to whom correspondence should be addressed. Tel.: +86-21-54345150. Fax: +86-21-54345119.

Electronic mail: zghu@ee.ecnu.edu.cn (Dated: Wednesday 25th April, 2018)

Fig. S 1: Schematic illustration of the CVD growth for $W(S_x Se_{1-x})_2$ alloy nanosheets.

Fig. S 2: Raman spectra as a function of temperature for a chemical vapor deposited single layer (a) WS₂, and (b) WSe₂, respectively.

Fig. S 3: Phonon frequency of five main vibrational modes as a function of temperature for monolayer $W(S_{0.5}Se_{0.5})_2$ nanosheets.

Fig. S 4: Phonon frequency of five main vibrational modes as a function of temperature for monolayer $W(S_{0.3}Se_{0.7})_2$ nanosheets.

Fig. S 5: The PL intensities of the exciton (X) and trion (T) emissions as a function of temperature for monolayer alloy nanosheets: (a) WS₂, (b) $W(S_{0.7}Se_{0.3})_2$, (c) $W(S_{0.5}Se_{0.5})_2$, (d) $W(S_{0.3}Se_{0.7})_2$ and (e) WSe₂, respectively.