# **Supplementary Information**

## Unveiling the composites structures of emissive consolidated p-i-n junction nanocells for white light emission

Kyu Seung Lee<sup>a,b,||</sup>, Jae Ho Shim<sup>a,||</sup>, Hyunbok Lee<sup>c</sup>, Sang-Youp Yim<sup>d</sup>, Basavaraj Angadi<sup>e</sup>, Byungkwon Lim<sup>b</sup>, Dong Ick Son<sup>a,\*</sup>

<sup>*a*</sup>Institute of Advanced Composite Materials, Applied Quantum Composites Research Center, Korea Institute of Science and Technology, Eunhari san 101, Bongdong-eup, Wanju-gun, Jeonbuk 565-905, Republic of Korea.

<sup>b</sup>School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU),

Suwon 16419, South Korea

<sup>c</sup>Department of Physics, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si,

Gangwon-do 24341, Republic of Korea

<sup>d</sup>Advanced Photonics Research Institute, Gwangju Institute of Science and Technology,

Gwangju 500-712, Korea

<sup>e</sup>Department of Physics, Bangalore University, Bangalore 560–056, India

#### **Contents:**

- 1. Cartesian coordinates of optimized structures.
- 2. STEM EDS data of QD in consolidated p-i-n junction NCs structures.
- 3. PL lifetimes of the consolidated p-i-n junction NCs.

<sup>\*</sup> Corresponding author: E-mail address: eastwing33@kist.re.kr (D. I. Son) Tel: +82 63 2198155, Fax: +82 63 2198129

<sup>&</sup>lt;sup>I</sup> These authors contributed equally to this work.

### 1. Cartesian coordinates of optimized structures.

| 1 abit 51. | (a) I V IX-I V | Ji structur | l        |
|------------|----------------|-------------|----------|
| atom       | X              | у           | Z        |
| С          | 2.348068       | -1.49185    | 2.369145 |
| С          | 3.400676       | -2.42126    | 2.297564 |
| С          | 4.451395       | -2.26063    | 1.396396 |
| С          | 4.422043       | -1.14104    | 0.561735 |
| С          | 3.363587       | -0.19758    | 0.615246 |
| С          | 2.321708       | -0.37842    | 1.532917 |
| Н          | 1.54651        | -1.64813    | 3.08512  |
| Н          | 3.397848       | -3.28334    | 2.958631 |
| Н          | 5.264898       | -2.97691    | 1.34364  |
| Н          | 1.511068       | 0.343862    | 1.579024 |
| N          | 5.341287       | -0.74307    | -0.41315 |
| С          | 4.869352       | 0.428955    | -1.00713 |
| С          | 5.443974       | 1.193318    | -2.02605 |
| С          | 4.7684         | 2.343652    | -2.42901 |
| С          | 3.556625       | 2.72945     | -1.82939 |
| С          | 2.992174       | 1.969916    | -0.80724 |
| С          | 3.64932        | 0.806542    | -0.38897 |
| Н          | 6.388272       | 0.907318    | -2.4784  |
| Н          | 5.191532       | 2.955854    | -3.22043 |
| Н          | 3.058574       | 3.63316     | -2.16825 |
| Н          | 2.059029       | 2.263502    | -0.33348 |
| С          | 6.432733       | -1.53659    | -0.8971  |
| С          | 7.598457       | -1.57211    | -0.238   |
| С          | 7.949208       | -0.81378    | 1.006045 |
| Н          | 8.85654        | -0.2176     | 0.850154 |
| Н          | 7.143396       | -0.1454     | 1.314236 |
| Н          | 8.163656       | -1.49894    | 1.835691 |
| С          | 6.144905       | -2.31993    | -2.1529  |
| Н          | 5.319026       | -3.02202    | -1.98755 |
| Н          | 5.836961       | -1.65509    | -2.96778 |
| Н          | 7.022033       | -2.8842     | -2.47966 |
| Н          | 8.3728         | -2.22012    | -0.64634 |
| Н          | 0.787913       | 3.633857    | 1.53718  |
| Н          | 0.241452       | 2.483616    | 2.546879 |

Table S1. (a) PVK-TOP structure

| С | -1.16135 | 3.086336 | 1.176777 |
|---|----------|----------|----------|
| Н | -1.13138 | 3.503944 | 0.162831 |
| Н | -1.64967 | 3.845734 | 1.813356 |
| С | -2.01056 | 1.81455  | 1.17257  |
| Н | -1.5296  | 1.077246 | 0.518252 |
| Н | -2.00946 | 1.377981 | 2.182423 |
| С | -3.45749 | 2.054039 | 0.72614  |
| Н | -3.92651 | 2.799515 | 1.384136 |
| Н | -3.4578  | 2.495825 | -0.2805  |
| С | -4.31055 | 0.779468 | 0.716838 |
| Н | -3.84152 | 0.035468 | 0.05776  |
| Н | -4.31154 | 0.335025 | 1.722137 |
| С | -5.757   | 1.016653 | 0.2657   |
| Н | -5.75509 | 1.474391 | -0.73376 |
| Н | -6.23149 | 1.749975 | 0.933313 |
| С | -6.60606 | -0.26176 | 0.233733 |
| Н | -6.611   | -0.72329 | 1.229905 |
| Н | -6.12762 | -0.98927 | -0.43588 |
| С | -8.05164 | -0.01022 | -0.21853 |
| Н | -8.06303 | 0.464346 | -1.21014 |
| Н | -8.53339 | 0.693925 | 0.472823 |
| Р | -9.11846 | -1.55413 | -0.23749 |
| С | -10.6958 | -0.81144 | -0.90502 |
| Н | -10.5366 | -0.2209  | -1.81452 |
| Н | -11.4081 | -1.61161 | -1.12781 |
| Н | -11.148  | -0.16844 | -0.14384 |
| С | -8.49016 | -2.36767 | -1.79633 |
| Н | -9.13735 | -3.21338 | -2.04802 |
| Н | -8.46313 | -1.6797  | -2.64937 |
| Н | -7.4839  | -2.76276 | -1.63028 |
| N | 0.221475 | 2.789768 | 1.576008 |

| Table S1. (b | ) TPBi-TOP | structure |
|--------------|------------|-----------|
|--------------|------------|-----------|

| Atom | X        | у        | Z        |  |
|------|----------|----------|----------|--|
| С    | 2.737093 | -3.23903 | -0.9013  |  |
| С    | 2.230078 | -2.08303 | -1.4986  |  |
| С    | 0.874829 | -1.98867 | -1.81075 |  |
| С    | 0.017611 | -3.05018 | -1.50202 |  |
| С    | 0.519403 | -4.20879 | -0.89973 |  |
| С    | 1.880975 | -4.30178 | -0.60841 |  |
| N    | -1.37247 | -2.97012 | -1.8235  |  |
| С    | -2.01399 | -3.78673 | -2.75438 |  |
| С    | -1.58716 | -4.90079 | -3.47996 |  |
| С    | -2.51084 | -5.47157 | -4.35186 |  |
| С    | -3.8109  | -4.94676 | -4.49839 |  |
| С    | -4.22327 | -3.82955 | -3.78142 |  |
| С    | -3.30795 | -3.23771 | -2.90081 |  |
| Ν    | -3.45251 | -2.12744 | -2.09108 |  |
| С    | -2.30244 | -1.9877  | -1.46752 |  |
| С    | -2.05721 | -0.92015 | -0.48135 |  |
| С    | -2.69258 | 0.314239 | -0.68222 |  |
| С    | -2.501   | 1.367164 | 0.220969 |  |
| С    | -1.67481 | 1.170245 | 1.336184 |  |
| С    | -1.05069 | -0.06241 | 1.558927 |  |
| С    | -1.24602 | -1.10783 | 0.645078 |  |
| C    | -0.15105 | -0.17967 | 2.720815 |  |
| Ν    | 0.58144  | 0.825103 | 3.154273 |  |
| C    | 1.317214 | 0.32963  | 4.214251 |  |
| С    | 2.250682 | 0.974744 | 5.036174 |  |
| С    | 2.842834 | 0.234307 | 6.05254  |  |
| С    | 2.516211 | -1.1217  | 6.257551 |  |
| С    | 1.593643 | -1.78116 | 5.449474 |  |
| С    | 1.012344 | -1.03354 | 4.423313 |  |
| N    | 0.063033 | -1.35079 | 3.451156 |  |
| С    | -0.65105 | -2.58664 | 3.392352 |  |
| C    | -2.03298 | -2.61214 | 3.606363 |  |
| С    | -2.71577 | -3.82656 | 3.559457 |  |
| С    | -2.02342 | -5.01553 | 3.32104  |  |
| С    | -0.64242 | -4.98688 | 3.12067  |  |
| С    | 0.046951 | -3.7741  | 3.14864  |  |

| С | -3.06218 | 2.715355 | 0.017901 |
|---|----------|----------|----------|
| N | -2.42631 | 3.806436 | 0.394622 |
| С | -3.22742 | 4.86416  | 0.010256 |
| С | -3.0309  | 6.242455 | 0.170058 |
| С | -4.01787 | 7.098572 | -0.30353 |
| С | -5.18352 | 6.602853 | -0.92307 |
| С | -5.39546 | 5.237523 | -1.09429 |
| С | -4.39384 | 4.384513 | -0.62586 |
| N | -4.27384 | 2.995152 | -0.61547 |
| С | -5.30285 | 2.092005 | -1.02645 |
| С | -5.72018 | 2.086613 | -2.36117 |
| С | -6.74215 | 1.225565 | -2.76104 |
| С | -7.33726 | 0.365448 | -1.83743 |
| С | -6.91527 | 0.373903 | -0.50687 |
| С | -5.90632 | 1.242439 | -0.09444 |
| Н | 3.794504 | -3.31058 | -0.66629 |
| Н | 2.891403 | -1.25398 | -1.73067 |
| Н | 0.476075 | -1.09929 | -2.28655 |
| Н | -0.15899 | -5.01953 | -0.65535 |
| Н | 2.27     | -5.2039  | -0.14577 |
| Н | -0.58508 | -5.30227 | -3.37435 |
| Н | -2.22096 | -6.34145 | -4.93358 |
| Н | -4.49888 | -5.42538 | -5.18879 |
| Н | -5.21867 | -3.4125  | -3.89348 |
| Н | -3.31324 | 0.431765 | -1.56108 |
| Н | -1.51102 | 1.985193 | 2.028636 |
| Н | -0.76125 | -2.06133 | 0.80571  |
| Н | 2.489416 | 2.020663 | 4.874272 |
| Н | 3.569797 | 0.706982 | 6.705903 |
| Н | 2.994906 | -1.66635 | 7.065802 |
| Н | 1.340184 | -2.82309 | 5.612993 |
| Н | -2.55946 | -1.68522 | 3.806854 |
| Н | -3.78934 | -3.84399 | 3.719619 |
| Н | -2.55827 | -5.95982 | 3.292751 |
| Н | -0.09896 | -5.90851 | 2.935494 |
| Н | 1.116738 | -3.73689 | 2.971877 |
| Н | -2.13356 | 6.613377 | 0.654219 |

| Н | -3.89403 | 8.171651 | -0.19373 |
|---|----------|----------|----------|
| Н | -5.93534 | 7.302625 | -1.27547 |
| Н | -6.29472 | 4.857716 | -1.56707 |
| Н | -5.23703 | 2.746586 | -3.07428 |
| Н | -7.0637  | 1.220567 | -3.79796 |
| Н | -8.12583 | -0.3105  | -2.15316 |
| Н | -7.37714 | -0.29216 | 0.215281 |
| Н | -5.58191 | 1.267378 | 0.940375 |
| С | 1.592061 | 3.202551 | 0.143584 |
| Н | 1.534607 | 3.969976 | -0.64076 |
| Н | 1.154728 | 2.284105 | -0.29492 |
| С | 3.063065 | 2.932721 | 0.47137  |
| Н | 3.497021 | 3.84915  | 0.891086 |
| Н | 3.114052 | 2.175428 | 1.266894 |
| С | 3.886282 | 2.462743 | -0.73273 |
| Н | 3.843763 | 3.22516  | -1.52404 |
| Н | 3.426107 | 1.559513 | -1.16133 |
| С | 5.352987 | 2.167811 | -0.39499 |
| Н | 5.39657  | 1.392978 | 0.383651 |
| Н | 5.808436 | 3.064811 | 0.047901 |
| С | 6.187276 | 1.722396 | -1.60223 |
| Н | 6.155239 | 2.503931 | -2.3746  |
| Н | 5.728293 | 0.831779 | -2.05617 |
| С | 7.650111 | 1.412303 | -1.25523 |
| Н | 7.683927 | 0.619032 | -0.49659 |
| Н | 8.099685 | 2.298519 | -0.78744 |
| С | 8.484284 | 0.990102 | -2.47339 |
| Н | 8.483015 | 1.787061 | -3.2305  |
| Н | 8.026129 | 0.109438 | -2.94335 |
| Ν | 0.880177 | 3.69906  | 1.321362 |
| Н | -0.08669 | 3.904384 | 1.069962 |
| Н | 0.838414 | 2.952615 | 2.016097 |
| Р | 10.24769 | 0.507552 | -2.05343 |
| С | 10.88746 | 0.209002 | -3.78212 |
| Н | 10.67861 | 1.043708 | -4.46111 |
| Н | 11.96923 | 0.048054 | -3.74775 |
| Н | 10.4301  | -0.69769 | -4.18969 |

| С | 10.99078 | 2.194202 | -1.75183 |
|---|----------|----------|----------|
| Н | 12.07727 | 2.099381 | -1.66197 |
| Н | 10.76534 | 2.903367 | -2.55676 |
| Н | 10.6178  | 2.602568 | -0.80832 |
|   |          | •        |          |

2. STEM EDS data of QD in consolidated p-i-n junction NCs structures.





Fig S2. (a) STEM image of CdSe/ZnS QD. (b) EDS spectra of the CdSe/ZnS QD.

#### 3. PL lifetimes of the consolidated p-i-n junction NCs.

|                        | τ <sub>1</sub> | τ2     | $\tau_{ave}$ | A <sub>1</sub> | A <sub>2</sub> |
|------------------------|----------------|--------|--------------|----------------|----------------|
| TPBi<br>388 nm         | 4.756          | 15.668 | 10.068       | 0.257          | 0.074          |
| PVK<br>403 nm          | 4.704          | 15.799 | 12.626       | 0.148          | 0.110          |
| Blue QDs<br>440 nm     | 10.258         | 30.021 | 18.523       | 0.171          | 0.042          |
| Green<br>QDs<br>554 nm | 11.616         | 32.915 | 17.4         | 0.152          | 0.020          |
| Red QDs<br>620 nm      | 16.389         | 40.398 | 20.096       | 0.189          | 0.014          |

Table S3. PL lifetimes of the consolidated p-i-n NCs. (Unit: ns)

**Table S3. PL lifetimes of the consolidated p-i-n NCs. (Unit: ns)** Excitation: 350nm,  $2^{nd}$  harmonic of fs Ti:Sapphire laser. The PL decay curves were fitted by a bi-exponential function to calculate the lifetimes of the samples.  $\tau_1$  and  $\tau_2$  are lifetimes.