Supporting Information

Inherent Electrochemistry and Charge Transfer Properties of Few-Layer

Two Dimensional Ti₃C₂T_x MXene

Pranati Nayak,^{a,b, ⊥} Qiu Jiang,^{a, ⊥} Rajeshkumar Mohanraman,^{a, ⊥} Dalaver Anjum,^c Mohamed Nejib Hedhili,^c and Husam N. Alshareef^a*

^aMaterials Science and Engineering, Physical Sciences & Engineering Division,^c Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia ^bElectrodics and Electrocatalysis (EEC) Biosensor Division, CSIR- Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamilnadu, 630006, India

[⊥]These authors contributed equally to the work

*E-mail: husam.alshareef@kaust.edu.sa

Fig. S1 displays the basic characterizations of the parent Ti₃AlC₂ MAX phase and etched bulk-Ti₃C₂T_x MXene. The FESEM micrograph of Ti₃AlC₂ MAX phase (Fig. S1a) shows compact, layered morphology. The layer separation in Ti₃C₂T_x MXene is observed after chemical etching due to the removal of Al layers from parent Ti₃AlC₂ MAX phase (Fig. S1 b). The layer separation was confirmed again from high-resolution TEM image (Fig. S1c). The lattice resolved HRTEM image $Ti_3C_2T_x$ (Fig. S1d) shows the hexagonal lattice structure. The XRD patterns of Ti₃AlC₂ before and after LiF/HCl treatment are shown in Fig. S1(e). It can be seen in the XRD patterns that the crystallinity and structural order of Ti₃AlC₂ decrease after LiF/HCl treatment. As reported, the characteristic (002) peak at 9.5° 20 in the Ti₃AlC₂ is broadened and obviously shifted to a much lower value, which results from the larger d-spacing and can be explained by the structural expansion from etching and substitution of Al with -F and -OH/=O terminating groups. The most intense peak at $2\theta = 39^{\circ}$ nearly disappeared, confirming the removal of Al layers from Ti₃AlC₂ which agrees with previous reports.^{13, 4} Raman spectra of Ti₃AlC₂ before and after acid treatment are shown in Fig. S1 (f). Peaks ω_1 , ω_3 and ω_4 assigned to Al-Ti vibration modes disappears after etching treatment. The peaks ω_5 and ω_6 appears with peak broadening and downshifting after etching, which is consistent with the literature. This fact confirms the loss of Al from the structure.¹

Fig. S1 FESEM image of (a) $Ti_3AlC_2 MAX$ phase (b) bulk- $Ti_3C_2T_x MX$ ene (c) TEM image (inset: selected area electron diffraction (SAED) pattern) (d) Lattice resolved HRTEM image of bulk- $Ti_3C_2T_x$ showing the Ti atom hexagonal lattice (e) X-ray diffractogram of bulk- $Ti_3C_2T_x MX$ ene compared with parent MAX phase (f) Raman spectra of bulk- $Ti_3C_2T_x MX$ ene compared with parent MAX phase.

Fig. S2 AFM height profiles for (a) $FL-Ti_3C_2T_x$ and (b) $ML-Ti_3C_2T_x$ for six different flakes.

We conducted the XPS analysis of FL-Ti₃C₂T_x and ML-Ti₃C₂T_x in order to quantify the surface functionalities in both the materials. To be noted here, we adopted MILD method (12 M LiF + 9 M HCl) to prepare FL-Ti₃C₂T_x and Clay method (5 M LiF + 6 M HCl) followed by ultrasonication to prepare ML-Ti₃C₂T_x. Fig. S3 shows the XPS survey and deconvoluted Ti 2p peak for (a, b) FL-Ti₃C₂T_x and (c, d) ML-Ti₃C₂T_x respectively. The elemental quantification is

Fig. S3 XPS survey spectra and deconvoluted XPS short scan of Ti 2p for (a, b) $FL-Ti_3C_2T_x$ and (c, d) $ML-Ti_3C_2T_x$, (e) table showing a comparison of surface functionalities of $FL-Ti_3C_2T_x$ and $ML-Ti_3C_2T_x$ MXene prepared by two different protocols.

shown in the insets of the corresponding figures. As observed, the content of F and Cl is higher in FL-Ti₃C₂T_x compared to ML-Ti₃C₂T_x, which is obvious since the higher molar concentration of LiF and HCl were being used for FL-Ti₃C₂T_x preparation. But TiO₂ concentration is little higher in ML-Ti₃C₂T_x (5.3%) compared to FL-Ti₃C₂T_x (4.2%). This is quite obvious as bath sonication is involved in the preparation root. Even though we prepared ML-Ti₃C₂T_x under highly controlled Ar flow and using a non-aqueous liquid for dispersion, a little enhancement in oxidation is observed. Similarly, $TiO_{2-x}F_x$ is slightly higher in ML- $Ti_3C_2T_x$ (6.6%) compared to FL- $Ti_3C_2T_x$ (6.4%). This shows that the surface functionalities like surface oxides (TiO_2 , $TiO_{2-x}F_x$) are slightly higher in ML- $Ti_3C_2T_x$, however, the functional groups like -F, -Cl concentration is slightly higher in FL- $Ti_3C_2T_x$. The percentage concentration of the deconvoluted Ti 2P peak is tabulated in Figure S3 e.

Fig. S4 Cyclic voltammograms of (a) $Ti_3C_2T_x$ MXene during anodic and (b) cathodic scan, (c) Ti_3AlC_2 MAX phase during anodic and (d) cathodic scan, Conditions: back ground electrolyte, PBS (0.1 M, pH 7.0); scan rate, 100 mV/s; all measurements are performed relative to the Ag/AgCl (1M KCl) reference electrode.

Fig. S5 XPS survey spectra and deconvoluted XPS short scan for Ti 2p in $Ti_3C_2T_x$ (a, b) after and (c, d) before conducting anodic scan.

Table S1 shows a comparison of surface functionalities of $Ti_3C_2T_x$ MXene before and after conducting anodic scan.

Region Ti 2p _{1/2} , _{3/2}	BE (eV)	% Concentration	Assigned to
Ti ₃ C ₂ T _x	454.9 (461.0) 455.7 (461.4) 457.1 (462.8) 458.5 (464.2) 459.3 (465.0) 460.3 (466.0)	15.6 37.8 34.1 3.9 6.6 2	Ti-C Ti (II) Ti (III) TiO ₂ TiO _{2-x} F _x C-Ti-F _x
Ti ₃ C ₂ T _x After anodic CV	454.9 (461.0) 455.7 (461.4) 457.1 (462.8) 458.5 (464.2) 459.3 (465.0) 460 (465.8)	13.2 33.5 27.1 4.3 15.5 6.4	Ti-C Ti (II) Ti (III) TiO ₂ TiO _{2-x} F _x C-Ti-F _x

Fig. S6 Cyclic voltammograms of ML-Ti₃C₂T_x MXene flakes recorded for 5 mM $[Fe(CN)_6]^{4-/3-}$ in 0.1 M KCl as supporting electrolyte; (a) initial three consecutive scans at 50 mV/s scan rate, (b) CVs at varying scan rates from 50-500 mV/s after recording 1st three scans. CVs recorded for 5 mM $[Ru(NH_3)_6]^{3+/2+}$ in 0.1 M KCl as supporting electrolyte at (d) scan rates rom 50-500 mV/s; (e) three consecutive scans recorded at 50 mV/s scan rate after recording (d); (f) again at varying scan rates from 50-500 mV/s. Corresponding Klingler-Kochi and Nicholson analyses and calculated HET rate (k^0) are shown in (c) and insets of (d and f).

Heterogeneous electron transfer (HET) rate

Since the peak-to-peak separation (ΔE) in the presence of the redox couple increase with scan rate ($9^{1/2}$), the reaction appears to be quasi-reversible in nature for both redox mediators (Fig. S6).³⁵ We employed the classical Nicholson method to calculate HET rate (k^0), which correlates the peak-to-peak separation (ΔE_p) to the charge transfer rate (k^0).²¹

$$\Psi = k^0 \left(\frac{D_0}{D_R}\right)^{\frac{\alpha}{2}} \sqrt{\frac{RT}{\pi n F D_0 \vartheta}}$$
(1)

where ψ is the dimensionless kinetic parameter determined from ΔE_p and is proportional to D_0/D_R -the diffusion coefficient of the oxidized/reduced form of the electroactive species, α - the transfer coefficient, *n* -the number of electrons transferred in the electrochemical reaction, *F* -the Faraday constant (*F* = 96489 C/mol), ϑ -the scan rate in V/s, *R* - the universal gas

constant (8.314 J/K mol) and *T* -the absolute temperature. k^0 can be determined from the slope of Ψ vs. $C\vartheta^{-1/2}$ plot.

The method developed by Nicholson to calculate k^0 is limited to ΔE_p below 220 mV under the assumption of quasi-reversibility of the electrode reaction. If the irreversibility dominates (ΔE_p exceeds 220 mV) in the electrode reactions, a method developed by Klingler and Kochi is used for k^0 evaluation directly from the scan rate, ΔE_p and is reliable for $\Delta E_p \sim 150$ mV and beyond.^{22, 23}

$$k^{0} = 2.18 \left(\frac{\alpha n F D \vartheta}{RT}\right)^{1/2} e^{-\left[\left(\alpha^{2} F / RT\right) n \Delta E_{p}\right]}$$
(2)

Table S2

HET rate (k^0) of two redox mediators on different 2D materials of transition metal and noble metal chacogenide family before and after anodic scan compared with our results palladium telluride (PdTe₂) and platinum telluride (PtTe₂). Bulk molybdenum sulphide (MoS₂ (bulk)) and exfoliated molybdenum sulphide (MoS₂ (exfoliated)).

Materials	<i>k</i> ⁰ [cms ⁻¹]				
	[Fe(CN)6] ^{4-/3-}		[Ru(NH ₃) ₆] ^{3+/2+}		
	Before anodic scan	After anodic scan	Before anodic scan	After anodic scan	
PdTe ₂ PtTe ₂	6.5 × 10 ⁻⁵ 2.5 x 10 ⁻⁴	3.4 × 10 ⁻⁶ 4.3 × 10 ⁻⁵	-	-	33
MoS_2 (bulk) MoS_2 (exfoliated)	2.11 x 10 ⁻³ 2.26 x 10 ⁻⁴	2.67 x 10 ⁻⁴ 2.50 x 10 ⁻⁴	-	- 1	34
ML-Ti ₃ C ₂ T _x FL-Ti ₃ C ₂ T _x	-	0.00503 0.09533	0.23195 0.399	0.2275 0.383	This work

Depending on the ΔE_p value, HET rate (k^0) was evaluated for both FL-Ti₃C₂T_x and ML-Ti₃C₂T_x electrodes. For $\Delta E_p < 220$ mV, equation 1 was used to calculate k^0 (all of [Ru(NH₃)₆]^{3+/2+} (shown in insets of Fig. S6 d and f) and most of [Fe(CN)₆]^{4-/3-} data). For $\Delta E_p > 220$ mV, equation 2 was used for each scan rate and the arithmetic mean was obtained as shown in Fig. S6c. The calculated k^0 values are tabulated in Table S2.

Table S3

HET rate (k^0) of two redox mediators on different 2D materials of carbon, transition metal and noble metal chacogenide family. basal plane pyrolytic graphite (BPPG); edge plane pyrolytic graphite (EPPG); few-layer (termed quasi-) graphene grown via CVD (qgraphene); mono-layer graphene grown via CVD (m-graphene); laser induced graphene from GO (L-graphene); graphene grown on copper foil by chemical vapor deposition (CVD-Gr); polyhedral structure graphene (Q-graphene); laser scribed graphene (LSG), bulk molybdenum selenide (MoSe₂(bulk)), BuLi-exfoliated molybdenum selenide (MoSe₂[†]), MeLi-exfoliated molybdenum selenide (MoSe₂^{*}), Tantalum sulphide (Tl₂S), palladium telluride (PdTe₂) and platinum telluride (PtTe₂).

	N Antoriala	<i>k</i> ⁰ [cms⁻¹]		References
	Waterials	Fe(CN) ₆] ^{4-/3-}	[Ru(NH ₃) ₆] ^{3+/2+}	
Carbon family	EPPG BPPG q-graphene m-graphene Monolayer graphene L-graphene CVD graphene Q-graphene	0.022 10 ⁻⁹ - 0.15 × 10 ⁻³ 0.02373 0.014 0.0186	0.0038 0.00877 0.00158 0.0011 0.31×10 ⁻⁴ - 0.012 0.0177	24 24 25 25 26 27 28 29
Transition metal dichalcogenides	MoSe ₂ (bulk) MoSe ₂ * MoSe ₂ * WSe ₂ (bulk) WSe ₂ * WSe ₂ * WS ₂ (bulk) WS ₂ * WS ₂ * Tl ₂ S	2.7×10^{-5} 1.52×10^{-4} 9.17×10^{-4} 5.48×10^{-5} 3.83×10^{-6} 1.21×10^{-5} 3.40×10^{-7} 3.60×10^{-7} 2.75×10^{-6} 6.3×10^{-5}	0.088	31
Noble metal dichalcogenides	PdTe ₂ PtTe ₂	6.5 × 10 ⁻⁵ 2.5 × 10 ⁻⁴		33