Covalently bonded multimers of Au₂₅(SBut)₁₈ as a conjugated system

SUPPORTING INFORMATION

Annelies Sels¹, Giovanni Salassa¹, Fabrice Cousin², Lay-Theng Lee,² Thomas Bürgi¹

¹ Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.

² CEA Saclay, UMR CEA CNRS 12, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France

*: corresponding author, <u>Thomas.Buergi@unige.ch</u>

Table of contents:

Figure S1: NMR on disulfide formation

Figure S2: comparison of SEC of $Au_{25}(SBut)_{18}$ and multimers

Figure S3: reference UV and MALDI of pure Au₂₅(SBut)₁₈

Figure S4: Full MALDI after SEC of the multimers

Figure S5: Full NMR spectrum after kinetics

Figure S6: MALDI, NMR and kinetics of thiophenol exchange reaction

Figure S7: MALDI and full UV spectra of the unlinking reaction

Figure S8: Reverse ligand exchange with the precipitate

Figure S9: Linking reaction of $Au_{25}(PET)_{18-x}(1)_x$ and $Au_{25}(PET)_{18-x}(2)_x$

Figure S10: Linking reaction of $Au_{25}(Sbut)_{18-x}(3)_x$

Figure S11: UV-Vis comparison of the first eluting fractions after linking

Figure S12: UV-vis of samples for SAXS

Figure S13: Fitting of SAXS curves by SASVIEW (second fractions)

Figure S1: NMR investigation on the disulfide formation of linker **1**. Pure **1** (red), **1** at 0h of the stability test (green) and **1** at 24h of the stability test (blue). No change is observed after 24h. The sample at 0h already shows some disulfide signals because of preparation from an original DCM solution to a DCM-d2 solution.

Figure S2: SEC of 2 mg $Au_{25}(SBut)_{18}$ (left column) and 2 mg of reaction mixture $Au_{25}(SBut)_{18} + 1$ (right column). It can be observed that the first eluting species of the multimers are eluting much faster than reference Au_{25} .

Figure S3: Reference UV (left) and MALDI (right) of pure $Au_{25}(SBut)_{18}$. The target mass peak of $Au_{25}(SBut)_{18}$ is at m/z 6529, but peaks at lower m/z present the fragmentation pattern of the loss of $Au_1(SBut)_1$

Figure S4: Full MALDI characterization of separated fractions after size exclusion chromatography

Figure S5: Full NMR spectrum after kinetics 3. Red and yellow are signals resulting from linker 1; green and blue are signals originating from butanethiol. Linking reaction with addition of 0.5 equiv of 1, 5 mg/mL in DCM-2d.

y=B + F exp ^(-xG)	Entering PhSH (3.55 ppm)	Leaving ButSH (2.55 ppm)
В	1002.9	25573.6
F	2881.03	-12011
G	0.551453	0.568001
Sum of B	26576.5	
Ratio at equilibrium	0.038	0.962

Figure S6: NMR (A, B), kinetics (C) and MALDI (D) of thiophenol exchange reaction. Exchange reaction was performed with 0.1 equiv of thiophenol, 4 mg/mL in DCM-2d. NMR comparison (E) of pure $Au_{25}(SBut)_{18}$ with $Au_{25}(SBut)_{18-x}(SPh)_x$ after exchange reaction confirms thiophenol exchanged species which can be the only reason for the NMR signal at 9 ppm.

Figure S7: Full UV-vis spectra (A) of the unlinking reaction after addition of 1 equiv butanethiol to a multimers solution of approximately 0.23 mg/mL in THF (concentration approximated by UV-vis calibration) and MALDI (B) of the separated fractions afterwards.

Figure S8: Unlinking reaction with the precipitated multimers. UV-vis analysis of the suspension of precipitated $Au_{25}(SBut)_{18}$ -multimers (0h) and after addition of butanethiol (0,1 mL). UV-vis taken after 2h 20 min, 4h 30 min and 72h of reaction. After 72h the precipitate dissolved and UV-vis shows again the typical features (800-840 nm) of a multimer solution.

Figure S9: Linking reaction of $Au_{25}(PET)_{18}^{0}$ with 2 (left) and 1 (right) (0.5 equiv dithiol, 0.5 mg/mL in THF).

SEC of $Au_{25}(PET)_{18-x}(2)_x$ (left) confirmed presence of larger species, eluting faster than Au_{25} . Although MALDI does not show any additional peaks at higher mass range, UV-vis indeed shows a new feature at 840nm for Fraction 1. SEC of $Au_{25}(PET)_{18-x}(1)_x$ (right) confirms presence of mostly unreacted Au_{25} as no clear fraction of linked clusters could be observed. It looks like PET-protected Au_{25} cluster does not form multimers using linker 1. We think this results from a more sterically hindered PET ligand compered to butanethiol.

Figure S10: Linking reaction of $Au_{25}(Sbut)_{18}^{0}$ with 1,4-Benzenedimethanethiol. A non-conjugated linker, 1,4-Benzenedimethanethiol was chosen in order to confirm the origin of the new peak (840 nm) in UV-Vis absorption spectra. (A) SEC of $Au_{25}(SBut)_{18-x}(3)_x$ confirmed presence of larger species, eluting faster than Au_{25} . UV-Vis of the separated fractions all show typical Au_{25} features, also the first eluting species do not show the UV-vis feature of 840 nm. (B) MALDI of the last fraction shows the ligand exchange product of 1 exchanged dithiol.(D) MALDI of the first fraction gives indication of presence of larger species, however no clear peak can be observed. (C)

Figure S11: UV-Vis comparison of the first eluting fractions after linking. In both linking reactions using linker 1 and 2, a new feature at 840 nm appears at the same position. The first fraction with linker 3 shows only the typical Au_{25} feature (690 nm). The absorption spectra were not normalized, therefore intensities should not be considered significant.

Figure S12: UV-vis of isolated fractions measured by SAXS. Fractions 1 (A) and zoom at higher wavelengths (B). All fractions show no longer the typical Au_{25} features but all show a signal at 840 nm. Fractions 2 (C) and zoom at higher wavelengths (D). All fractions have still some Au_{25} features, except the fraction of PET-protected Au_{25} linked with 2 who appears to show the UV-vis feature at 840 nm.

Figure S13: Non-normalized fitting of SAXS curves by SASVIEW (second fractions). $Au_{25}(SBut)_{18} \sim 1$ is Sample 7; $Au_{25}(SBut)_{18} \sim 2$ is Sample 6; $Au_{25}(PET)_{18} \sim 2$ is Sample 5

