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S1. Experimental details

Figure S1-1. Scanning electron microscopy image of cross-section of the wavy 

QWNR. The bright and dark areas are Au and AlAs sacrificial layers respectively, 

with QW in the middle. 

Preparation of the Quantum Well Nanoribbons in a Wavy Configuration. The 

fabrication of wavy quantum well nanoribbons starts with the deposition of functional 

materials by molecular beam epitaxy (MBE) on a native GaAs (001) substrate 

sequentially as AlAs/ Al0.3Ga0.7As/ GaAs/ Al0.3Ga0.7As (100 nm/ 250 nm/ 6.5 nm/ 250 

nm). The patterning process begins with the negative photoresist lithography, after 

which the patterned area with ribbons (90 μm wide and 2.5 mm long) on the epitaxy 

plate is empty. An additional layer of Au with thickness of 80 nm is then deposited on 

top using Vaccum Sputter Coater (DP 650, France). Clean the photoresist to strip the 

undesired gold off, hence only the designed gold ribbons are remained on top, 

meanwhile serving as a mask for the following wet etching process with mixed acid 

(85% H3PO4/ 30% H2O2/ deionized water = 2:1:10) for 30 s to form the quantum well 

nanoribbons on the substrate. Partially removing the AlAs sacrificial layer by HF acid 

(40% HF/ 100% ethanol = 1:2) for 1 min 30 s to suspend the nanoribbons on the 

mother wafer and ready for transfer printing. The soft substrate PDMS (Sylgard 184, 



Dow Corning) mixed at weight ratio 10:1 is prepared in ultraviolet light for 3 min to 

clean and activate its surface in order to facilitate the printing process. Then pre-

stretch the PDMS substrate by a bidirectional stretcher and stick the suspended 

ribbons onto the surface. Finally, peel the rigid substrate off and release the PDMS 

elastomer to finish the fabrication process. The cross-sectional image of wavy QNNR 

and 3D morphographic image of the sample are characterized by scanning microscope 

(SEM, FEI Quanta 450) and 3d laser microscope (VK-X 200 series). 

μ-PL Measurements of the Wavy Quantum Well Nanoribbon. The steady-state PL 

spectra under the excitation of a 633 nm cw laser is collected by a microscope PL 

setup with Horiba Jobin Yvon iHR550 spectrometer. A HeNe laser (λ = 633 nm) is 

chosen to focus onto a single spot with a diameter of about 2 μm. Laser power is set 

to 0.06 mW in order to eliminate the possible cross-talk signal caused by the thermal 

effect. The micrometer-scale measurements ensure the precise reflection of the “in 

situ” information. Si CCD detector is chosen to detect the photoluminescence signals. 

Alternatively, the integrated PL of nanoribbon ensembles was collected using a 5× 

objective (Leica N-Plan, 15 μm spot diameter, large spot). 

S2. Theoretical methods

From Eq. (4) and (5) in the main text, the whole Hamiltonian can be recast into a 

linear combination of terms that include all orders of k, which is written as,

(2) 2 (1) (0)
Bulk StrainH(k) H (k) H H H Hi i i i ik k    

(S2-1)



11 11 11

11

11. .

A A A
A

H c A

 
 
 
 
 
 

L
M

O M

where

  (2) 2 (1) (0)
, , ,= ,mn mn i i mn i i mn iA A k A k A  , , .i x y z (S2-2)

To solve Eq. (7) numerically in real space using finite difference method (FDM), one 

should carefully cope with the uniformity of difference scheme. For the quantum well 

structure, we discuss the one-dimensional condition along z direction ([001]), the 

wave vector along the quantized direction is set to  as the differential /zk i z   

operator to form like Eq. (6). Then recast the Hamiltonian into the form of ,zk
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In order to maintain the symmetry of Hamiltonian, the first-order difference operator 

is symmetrically processed into . So we get the (1) (1) (1)H( ) [H( ) H( ) ] / 2z z zz k z k k z 

first-order difference form
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the second-order difference form
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and the zero-order term is
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 is the grid size, which represent the middle points of the current grid 1/2 1/2i iz z z   

and the backward grid. The solution of the eigenfunction contains eight components
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Then the discretized Schrödinger equation is an 8N×8N matrix form of , where F(z)i

. As a result, the discretized Schrödinger equation is arranged into a form of 1i N :
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Apply Eq. (12) to the 8N×8N matrix, we can see
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Finally, the solution of the 8×8 Schrödinger equation of the specific quantum well can 



be obtained by solving the above sparse large matrix.

S3. Analysis of the interaction between Au and semiconductor.

Figure S3-1. Band diagram before contact of Au and Al0.3Ga0.7As

Figure S3-2. Schematic of the structure under equilibrium state

The Au layer is deposited on the QWNR to adjust the location of the neutral plane. 

We firstly consider the electron transfer caused by the difference of Fermi energy 

between Au and semiconductor, as shown in Figure S3-1. After contact, the electrons 

of Au flow to the Al0.3Ga0.7As, which form the built-in electric field at the interface. 

The maximum width of the depleted layer on the semiconductor side is 16.3 nm given 

by  The whole system quickly reached a thermal equilibrium dep s bi aW 2 / .qN 



state after contact, as shown in Figure S3-2. The quantum well is in the neutral zone 

which is not affected.

Figure S3-3. FEM analysis for the light absorption of QWNR

The light injection during the measurement caused non-equilibrium state of the 

system. We simulate the whole field of structure irradiated by the light source (λ = 

633 nm) in the measurement by finite element method. Here, the GaAs layer is too 

thin to be neglected. Figure S3-3 shows the distribution of optical power loss. The 

result indicates that the light absorption is mainly concentrated in the Al0.3Ga0.7As 

layer. The reflected light from the Au-Al0.3Ga0.7As interface together with the incident 

light form the standing wave distribution. By integrating the absorption of each layer, 

we can get the light absorption of each layer of material. The reflectivity of the whole 

system is 48.7%, the absorptivity of the whole semiconductor layer is 49.4%, and the 

absorptivity of the gold layer is 1.6%. That is, the absorptivity of the semiconductor 

layer is approximately 30.8 times that of the gold layer. Supposing that all of the free 

electrons produced by the thermal excitation of gold was injected into the QW 

without recombination, the injection caused by gold is still far less than the injection 

caused by the semiconductor p-n junction. Therefore, the concentration of free 

electrons injected from gold into semiconductors is negligible for the optical 



properties of QWNR.

S4. Analysis of radiative recombination process

Figure S4-1. Dispersion curves of the highest valence band near the Γ point for 

different strain conditions, along [100] and [110] direction respectively.

Figure S4-2. Material gain spectra of the GaAs/ Al0.3Ga0.7As/ GaAs QW for (a) TE 

and (b) TM under different strain conditions: ,  and 0.11%xx   0%xx 

.  0.11%xx 

We can calculate TE and TM material gain spectra by the spontaneous emission 



transformation method, taking into account the homogenous broadening by the 

Lorentzian function with a full-width-at-half-maximum (FWHM) linewidth .
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Here,  is the background refractive index,  is the speed of light in free space,  is rn c 0

the permittivity of free space, and  is the photon energy.  and  is the h n t( )f k m t( )f k

electron Fermi occupation number in the conduction and valence band. For quantum 

wells, the optical momentum matrix elements are polarization-dependent. By 

averaging the TE and TM momentum matrix elements in the plane of quantum wells, 

the average squared TE momentum matrix elements are given by, 
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Similarly, the average squared TM momentum matrix elements can be written as
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where  is the wavefunction of the n-th state in the Γ-conduction band;  and  n z (1)
mg

 (  and ) are eigenfunctions of the upper (lower) block Hamiltonian of the (2)
mg (3)

mg (4)
mg

HH1 and LH1 band;  is the bulk momentum matrix element. bM


