Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

Supporting information

Non-volatile "Programmable" Transparent Multilevel Ultra-violet Perovskite

Photodetector

Mohit Kumar^{†, ^}, Hong-Sik Kim^{†, ^, #}, Dae Young Park[#], Mun Seok Jeong[#]

and Joondong Kim*,^{†,^}

[†] Photoelectric and Energy Device Application Lab (PEDAL), Multidisciplinary Core

Institute

for Future Energies (MCIFE), Incheon National University, 119 Academy Rd. Yeonsu,

Incheon, 22012, Republic of Korea

[^] Department of Electrical Engineering, Incheon National University, 119 Academy Rd.

Yeonsu, Incheon, 22012, Republic of Korea

[#] Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of

Korea

Figure S1. XRD data of $(C_4H_9NH_3)_2PbBr_4$ on glass substrate

Figure S2. Current-voltage characteristics measured with the fast ramp rate of 0.2 V s⁻¹ at a fixed location.

Figure S3. Transient response in respective level-1 and level-2, measured with 0.5 V, 365 nm, and 7 mW cm⁻². The data were measured for 10 days in ambient air with humid (>50%) conditions, confirming the high air stability of the photodetector.

Figure S4. (a) Intensity-dependent transient photoresponse of the device in Level-1, (b) and(c) Responsivity and detectivity as a function of illuminated intensity in Level-1, respectively.(d) Intensity-dependent transient photoresponse of the device in Level-2, (e) and (f)Responsivity and detectivity as a function of illuminated intensity in Level-2, respectively.

Table-1. Comparison of the data of the ultra-violet operated photodetectors. T, Transmittance; *R*, responsivity; *D*, detectivity. Rise time (τ_r) and fall time (τ_f).

Material structure	Wavelength	Bias	T (%)	R	D	$ au_{ m r}/ au_{ m f}$	Ref.
	(nm),	(V)		(A W-1)	(Jones)	(s)	
	Intensity						
CH ₃ NH ₃ PbI ₃	650,	10	Semi-	0.1	1.02×10 ¹	0.3/. m	1
	100 µW cm ⁻²		transparent		2		
CH ₃ NH ₃ PbI _{3-x} Cl _x	254,	2		7.85		0.2/0.7 μ	2
CH ₃ NH ₃ PbCl ₃	365,	15	Visible	46.9 m	1.2×10 ¹⁰	24/62 m	3
single crystals	100 mW cm ⁻²		blind				
CsPbBr ₃	400,	3 V		6×10 ⁴		1/. m	4
microcrystals	1 mW cm-2						
CH ₃ NH ₃ PbI ₃ films	365,	10		3.49		<200 m	5
on ITO	10 μW cm ⁻²						
CH ₃ NH ₃ PbI ₃	420,	5		13.57		0.08/0.2	6
microwires on	500 μW cm ⁻²					m	
SiO ₂ /Si							
CH ₃ NH ₃ PbI ₃	400-800 nm	1			1011	0.23/0.38	7
						m	
CH3NH3PbI _{3-x} Cl _x	30-800 nm	0			8×10 ¹³	180/160 n	8
(C ₄ H ₉ NH ₃) ₂ PbBr ₄	365,	0.5	76%	32 m	8.5×10 ⁸	2/16 m	This
	7 mW cm ⁻²						work

References

- H. Deng, X. Yang, D. Dong, B. Li, D. Yang, S. Yuan, K. Qiao, Y. B. Cheng, J. Tang and H. Song, *Nano Lett.*, 2015, **15**, 7963–7969.
- 2 Y. Guo, C. Liu, H. Tanaka and E. Nakamura, J. Phys. Chem. Lett., 2015, 6, 535–539.
- G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, B.
 Murali, E. Alarousu, O. F. Mohammed, T. Wu and O. M. Bakr, *J. Phys. Chem. Lett.*, 2015, 6, 3781–3786.
- B. Yang, F. Zhang, J. Chen, S. Yang, X. Xia, T. Pullerits, W. Deng and K. Han, *Adv. Mater.*, 2017, **1703758**, 1–8.
- X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang and Y. Xie, *Adv. Funct. Mater.*,
 2014, 24, 7373–7380.
- W. Deng, X. Zhang, L. Huang, X. Xu, L. Wang, J. Wang, Q. Shang, S. T. Lee and J. Jie, *Adv. Mater.*, 2016, 28, 2201–2208.
- W. Hu, W. Huang, S. Yang, X. Wang, Z. Jiang, X. Zhu, H. Zhou, H. Liu, Q. Zhang, X.
 Zhuang, J. Yang, D. H. Kim and A. Pan, *Adv. Mater.*, 2017, **1703256**, 1703256.
- L. Dou, Y. (Micheal) Yang, J. You, Z. Hong, W.-H. Chang, G. Li and Y. Yang, *Nat. Commun.*, 2014, 5, 5404.