Supporting Information

Hierarchical Branched Platinum-Copper Tripods as Highly Active

and Stable Catalysts

Hui Xu,^a Pingping Song,^a Fei Gao,^a Yukihide Shiraishi ^b, and Yukou Du ^{a,b*}

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University,

Suzhou 215123, PR China

^b Tokyo University of Science Yamaguchi, Sanyo-Onoda-shi, Yamaguchi 756-0884, Japan

* Corresponding author: Tel: 86-512-65880089, Fax: 86-512-65880089;

E-mail: duyk@suda.edu.cn (Y. Du).

Figure S1 Length distributions of (a) three main branches, (b) secondary branches in $Pt_{52}Cu_{48}$ HTNCs. (c) SEM-EDS analyses of $Pt_{52}Cu_{48}$ HTNCs.

Figure S2 Representative (a) TEM and (b) corresponding HRTEM images of individual Pt-Cu HTNCs.

Figure S3 XPS spectra of (a) Pt 4f and (b) Cu 2p in different catalysts.

Figure S4 TEM images of Pt-Cu NCs prepared in the absence of PVP, while keeping other conditions the same.

Figure S5 (a) Chronoamperometry (CA) curves of different electrocatalysts conducted at the potential of -0.25 V in 1.0 M KOH + 1.0 M EG solution. (b) The recorded normalized current and retained mass activity of different electrocatalysts after CA measurements for 3 h.

Figure S6 Cyclic voltammograms (1st, 200th, 400th, 600th, 800th and 1000th cycle) of (a) the $Pt_{52}Cu_{48}$ HTNCs, (b) the $Pt_{65}Cu_{35}$ HTNCs, (c) the $Pt_{39}Cu_{61}$ HTNCs and (d) commercial Pt/C for EGOR, respectively. Potential was continuously scanned for 1000 sweeping cycles at 50 mV s⁻¹ in 1.0 M KOH + 1.0 M EG for EGOR durability test.

Figure S7 Cyclic voltammograms (1st, 200th, 400th, 600th, 800th and 1000th cycle) of (a) the $Pt_{52}Cu_{48}$ HTNCs, (b) the $Pt_{65}Cu_{35}$ HTNCs, (c) the $Pt_{39}Cu_{61}$ HTNCs and (d) commercial Pt/C for GOR, respectively. Potential was continuously scanned for 1000 sweeping cycles at 50 mV s⁻¹ in 1.0 M KOH + 1.0 M glycerol for GOR durability test.

Figure S8 Representative TEM images of Pt₅₂Cu₄₈ HTNCs after stability tests.

Figure S9 Representative TEM images of Pt/C catalysts after stability tests.

Figure S10 Nyquist plots of the $Pt_{52}Cu_{48}$ HTNCs, $Pt_{65}Cu_{35}$ HTNCs, $Pt_{39}Cu_{61}$ HTNCs and (d) commercial Pt/C in (a)1.0 M KOH + 1.0 M EG and (b)1.0 M KOH + 1.0 M glycerol solutions at the potential of -0.20 and -0.15V, respectively.

Catalysts	Peaks cu	rrents from	Electrolyte	References
	CV curves			
	J _m	J _s		
	(A/mg)	(mA/cm ²)		
Pt ₅₂ Cu ₄₈ HTNCs	5.7	11.2	1.0 M KOH + 1.0 M	This work
			EG	
AuPt@Pt	0.6		0.1 M H ₂ SO ₄ + 0.5 M	Electrochim. Acta 2016, 219, 321-
Nanocrystals/rGO			EG	329.
Pt _{4.5} Pb NWs	0.73	0.30	0.1M HClO ₄ +0.5 M	Small 2016 , <i>12</i> , 4464- 4470
Pt _{5.7} Pb NWs	0.63	0.22	EG	
Pt-Sn	0.22		0.5 M H ₂ SO ₄ + 1 M	Int. J. Hydrogen Energy 2011 , <i>36</i> , <i>5</i> ,
Nanocrystals/CNT			EG	3313-3321
Pt/Ru/XC72	0.24		0.5 M H ₂ SO ₄ + 0.4M	J. Power Sources 2011, 196, 1078-
Catalyst			EG	1083.
Pt-Ru	0.175		0.5 M H ₂ SO ₄ + 1 M	Int. J. Hydrogen Energy 2012, 37,
Nanocrystals/CNT			EG	9941-9947.
PtPd@Pt	0.23		0.5 M H ₂ SO ₄ + 0.5 M	Electrochim. Acta 2016, 18, 576-
Nanocrystals/rGO			EG	583.
PtNi _{0.67} Pb _{0.26}	0.42	0.65	0.1 M HClO ₄ + 0.2 M	J. Mater. Chem. A 2017, 5, 18977-
NWs/C			EG	18983

Table S1 EGOR performances of $Pt_{52}Cu_{48}$ HTNCs and various electrocatalysts from published

works

Pd ₁ Cu ₁ nanosphere	3.58	1.0 M	Electrochim. Acta 2018, 261, 521-
		KOH + 1.0 M EG	529.
PdCuBi	0.171	1 M KOH + 0.5 M	J. Power Sources. 2014, 249, 9-12
nanoparticles		EG	
PtCu nanocrystals	4.259	1.0 M	Int. J. Hydrogen Energy 2018, 43,
		KOH + 1.0 M EG	1489-1496
PtRu alloy	3.052	1.0 M	Int. J. Hydrogen Energy 2017, 42,
		KOH + 1.0 M EG	20720-20728
PdAg nanoparticle	0.169	0.1 M	Int. J. Hydrogen Energy 2015, 40,
		KOH + 1.0 M EG	2225-2230
PtPd@Pt	1.167	0.5 M	Electrochim. Acta 2016, 187, 576-
nanocrystals		KOH + 0.5 M EG	583.

Table S2 GOR performances of $Pt_{52}Cu_{48}$ HTNCs and various electroatalysts from published works

Catalysts	Peaks currents from CV		Electrolyte	References
	curves			
	J _m (A/mg)	J _s (mA/cm ²)		
Pt ₅₂ Cu ₄₈ HTNCs	3.2	6.2	1.0 M KOH + 1.0 M	This work
			Glycerol	
PtNi _{0.67} Pb _{0.26}	0.36	0.61	0.1 M HClO ₄ + 0.2 M	J. Mater. Chem. A 2017, 5, 18977-
NWs/C			Glycerol	18983
Pt Nanoparticles		~ 0.23	0.1 M H ₂ SO ₄ + 0.255	Electrochim. Acta 2013 , 98, 25-31.
			M Glycerol	
Pt NOs		~ 0.35	$0.1 \text{ M H}_2\text{SO}_4 + 0.1 \text{ M}$	Electrocatal. 2011, 2, 96- 105.
			Glycerol	
Pt/MWCNT		0.16	0.1 M HClO ₄ + 1.0 M	Electrochim. Acta 2012, 66, 180-
			Glycerol	187.

DtNi/C	0.204	0.27	$0.5 \text{ M KOH} \pm 2.0 \text{ M}$	Appl Catal A 2012 420 430 30
I UNI/C	0.204	0.27	0.5 WI KOIT + 2.0 WI	Appl. Catal. A 2012, 429-450, 59-
			Glycerol	47
Pd-CNx/G	1.1		0.5 M KOH + 0.5 M	ACS Catal. 2015, 5, 3174-3180
			Glycerol	
Pd ₅ Ru-PEDOT/C		4.3	1 M KOH + 0.5 M	Electrochim. Acta 2015, 180, 339-
			Glycerol	352
Pd50Ni50/C	0.190		0.1 M KOH + 0.1 M	Electrocatal. 2013, 4, 167-178
			Glycerol	
Pd ₃ Sn/phen-C	0.175		0.1 M KOH + 0.5 M	Int. J. Hydrogen Energy 2016, 41,
			Glycerol	1272-14280
Pd-NiOx-P/C	0.364		0.1 M KOH + 0.5 M	Chem. Eng. J. 2017, 38, 419-427
			Glycerol	
PtAg nanotubes	0.208	6.0	0.5 M KOH + 0.5 M	Electrochem. Commun.
			Glycerol	2014,46,36-39

 $\textbf{Table S3} \ The \ parameters \ of \ R_{ct} \ from \ equivalent \ circuits \ for \ different \ catalysts \ in \ different \ solutions$

Catalysts	$1.0 \text{ M KOH} + 1.0 \text{ M EG} (\Omega \text{ cm}^2)$	$1.0 \text{ M KOH} + 1.0 \text{ M glycerol} (\Omega \text{ cm}^2)$
Pt ₅₂ Cu ₄₈ HTNCs	239	242
Pt ₆₅ Cu ₃₅ HTNCs	271	302
Pt ₃₁ Cu ₆₉ HTNCs	347	325