Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

Supplementary information for

Plasmon-induced nonlinear response of silver atomic chains

Lei Yan, Mengxue Guan and Sheng Meng*

Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China *Corresponding authors: smeng@iphy.ac.cn

This file contains: Fig.S1 to Fig. S3

FIG. S1. (a) Absorption spectrum of a linear silver chain Ag_6 (a) and Ag_6H_2O (b), induced by an impulse field with intensity $E_0 = 0.01, 0.03, 0.05, 0.07, 0.09$ V/Å. Comparison of peak intensity (c) and full width at half-maximum (FWHM) (d) in the absorption spectra with varying laser field strength for Ag_6 and Ag_6H_2O .

FIG. S2. Peak intensity in tunneling current spectrum of Ag₆H₂O under laser illumination with a resonant frequency $\hbar \omega = 1.69 \text{ eV}$ and $E_{\text{max}} = 0.01 \text{ V/Å}$ for the first (ω), second (2 ω), third (3 ω), fourth-order (4 ω) response, as a function of (a) laser intensity and (b) frequency $\hbar \omega$. Thin line in panel (b) is the absorption spectrum for Ag₆H₂O.

FIG. S3. Tunneling current spectrum for Ag_4H_2O , Ag_6H_2O (a), and Ag_6CO (b), when driven by the laser pulse shown in Fig. 3(a).