Electronic Supplementary Material (ESI) for Nanoscale.

Reprogrammable Multifunctional Chalcogenide Guided-wave Lens
 Tun Cao*,a, Chen-Wei Weia, Meng-Jia Cena ${ }^{\text {a }}$, Bao Guo ${ }^{\text {a }}$, Yong-June Kim ${ }^{\text {b }}$, Shuang Zhang ${ }^{\text {c }}$ and Cheng-Wei Qiu*,b
 aschool of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, 116024, China

${ }^{\text {b }}$ Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Republic of Singapore
${ }^{\text {c School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK }}$
*Corresponding Author: E-mail: chengwei.qiu@nus.edu.sg; caotun1806@dlut.edu.cn

Section 1. Derivation of the refractive index profile of the curvature

As can be observed in the right column of Fig.1b, the curved surface S is produced by rotating a curve C symmetrically about the z-axis. The other two cylindrical coordinates are ρ and ϑ. Herein, we specify the curve C and thus the surface S by providing $\rho(s)$ or $s(\rho)$ where s is the arc distance measured along the C. One could use as the surface coordinates either s and ϑ or, on occasions, ρ and ϑ. The surface metric that gives the distance $d L$ between the neighboring points is shown by

$$
\begin{aligned}
& d L^{2}=d s^{2}+\rho^{2} d \theta^{2} \\
& \text { MERGEFORMAT (S1) }
\end{aligned}
$$

If we multiply the $d L$ by n, the refractive index and optical distance $d \zeta$ between the neighboring points can be expressed by

$$
\begin{equation*}
\mathrm{d} \zeta^{2}=n^{2}\left(d s^{2}+\rho^{2} d \theta^{2}\right) \tag{*}
\end{equation*}
$$

MERGEFORMAT (S2)

If s and ϑ are treated as the independent variables, Eq. (S2) may be rewritten as

$$
\begin{aligned}
& \mathrm{d} \zeta^{2}=n(s)^{2}\left(d s^{2}+\rho(s)^{2} d \theta^{2}\right) \\
& \text { MERGEFORMAT (S3) }
\end{aligned}
$$

However, if ρ and ϑ are chosen, it can be alternatively written as

$$
\begin{aligned}
& \mathrm{d} \zeta^{2}=N(\rho)^{2}\left(s^{\prime}(\rho)^{2} d \rho^{2}+\rho^{2} d \theta^{2}\right) \\
& \text { MERGEFORMAT (S4) }
\end{aligned}
$$

where $N(\rho)=n(s)$. If we employ the bars over the quantities to present those relating to a particular structure and unbarred quantities for those associated with other equivalent structure ${ }^{34}$, the equivalence of the optical metrics, by Eq.(s2), requires

$$
\begin{equation*}
n^{2}\left(d s^{2}+\rho^{2} d \theta^{2}\right)=\bar{n}^{2}\left(d \bar{s}^{2}+\bar{\rho}^{2} d \bar{\theta}^{2}\right) \tag{*}
\end{equation*}
$$

MERGEFORMAT (S5)
where $n d s=\bar{n} d \bar{s}, n \rho=\bar{n} \bar{\rho}$, and $\theta=\bar{\theta}$. It thus results in the behind set of integral relationships,

$$
\begin{array}{cc}
\int_{a}^{s} n d s=\int_{\bar{a}}^{\bar{s}-} \bar{n} d \bar{s} & \^{*} \\
\text { MERGEFORMAT (S6) } & \\
\quad n \rho=\bar{n} \bar{\rho} & \backslash^{*} \\
\text { MERGEFORMAT (S7) } & \\
\quad \int_{b}^{s} d s / \rho=\int_{\bar{b}}^{\bar{s}} d \bar{s} / \bar{\rho} & \^{*} \\
\text { MERGEFORMAT (S8) } &
\end{array}
$$

where a and \bar{a}, b and \bar{b} show the values of s and \bar{s} corresponding to the equal points in the two guides ${ }^{34}$. We can then determine $\bar{n}(\bar{s})$ and $\bar{\rho}(\bar{s})$ when they correspond to the given guide. The mapping function $\bar{s}=f(s)$ can be achieved by solving Eq. (S8) for \bar{s}. By setting $\bar{s}=\bar{\rho}=r$ for a flat guide, Eqs. (S7) and (S8) are derived as following Eqs. (S9) and (S10), respectively.

$$
\begin{aligned}
& N \rho=n(r) r \\
& \text { MERGEFORMAT (S9) }
\end{aligned}
$$

$$
\backslash^{*}
$$

$$
\begin{aligned}
& \int_{b}^{s} d s / \rho=\int_{1}^{r} d r / r=\ln r \\
& \text { MERGEFORMAT (S10) }
\end{aligned}
$$

Thus the mapping function is

$$
\begin{equation*}
r=f(s)=\exp \int_{b}^{s} d s / \rho \tag{*}
\end{equation*}
$$

MERGEFORMAT (S11)
where $s=b$ corresponds to $r=1$. One can derive below Eq. (S12) using Eqs. (S9) and (S11).

$$
\begin{aligned}
& \quad N(s)=n[f(s)] f(s) / \rho(s) \\
& \text { MERGEFORMAT (S12) }
\end{aligned}
$$

If one employs ρ as the independent variable in place of s in Eq. (s11), we can then have

$$
\begin{aligned}
& F(\rho)=\exp \int_{1}^{\rho}\left[s^{\prime}(\rho) / \rho\right] d \rho \\
& \text { MERGEFORMAT (S13) }
\end{aligned}
$$

By replacing $f(s)$ in Eq. (S12) with Eq.(S13), the refractive index of the curved surface can be derived as

$$
\begin{aligned}
& N(\rho)=n[F(\rho)] F(\rho) / \rho \\
& \text { MERGEFORMAT (S14) }
\end{aligned}
$$

The left-hand side of Eq. (S14) can be applied to the arbitrary rotationally symmetric curved surface on which light can propagate. We take an example of a Rinehart-shaped surface of which the arc distance s can be expressed as $s=\frac{1}{2} \rho+\frac{1}{2} \sin { }^{-1} \rho$. An analytical solution of Eq. (S14) regarding the Rinehart-shaped surface can be expressed as

$$
N(\rho)=\frac{2}{\left(1+\sqrt{1-\rho^{2}}\right)^{\frac{1}{2}}\left(e^{\frac{\rho}{\left(1+\sqrt{1-\rho^{2}}\right)^{\frac{1}{2}}}}+e^{\frac{-\rho}{\left(1+\sqrt{1-\rho^{2}}\right)^{\frac{1}{2}}}}\right)}
$$

MERGEFORMAT (S15)

The proposed approach allows gradient index lenses to be mapped onto arbitrary rotationally symmetric curved surfaces to manipulate the wavefront of the guided-wave and thus enabling various singular phenomenon. Examples of Einstein's ring, invisible cloak, Maxwell fish-eye, and Luneburg lenses are demonstrated, for Rinehart-shaped surfaces, always leading to the requirements of isotropic permittivity. The structure is simulated by a commercial software COMSOL based on the finite element method. The computational domain has a perfect electric conductor (PEC) boundary for the top and bottom surfaces of the curvature and scattering boundary conditions around the edge. The cylindrical wave is excited by a point source, propagating from left to right with the E-field polarized along the z-axis.

Section 2. Refractive index of the $\mathrm{Ge}_{2} \mathrm{Sb}_{2} \mathrm{Te}_{5}$ at the different structural phase

Figure S1. Refractive index nGST vs wavelength for both amorphous and crystalline phases of $\mathrm{Ge}_{2} \mathrm{Sb}_{2} \mathrm{Te}_{5}{ }^{27}$

Section 3. "On/Off" state of the multi-functions in the Rinehart-shaped surface

Figure S2. The left (right) columns show "on (off)" state of the functions of (a) invisible cloaking, (b) Maxwell fish-eye lens, and (c) Luneburg lens achieved by the Rinehart-shaped surface consisting of the $\mathrm{Ge}_{2} \mathrm{Sb}_{2} \mathrm{Te}_{5}$ dielectric with the refractive index distributions presented in the insets accordingly. The right columns show that the guided-wave fronts are severely distorted once the $\mathrm{Ge}_{2} \mathrm{Sb}_{2} \mathrm{Te}_{5}$ curvature is homogenously crystallized thus switches off the functionalities accordingly.

Section 4. The multi-functions in the Rinehart-shaped surface with the different discretization process

To explore the effect of the number of $\mathrm{Ge}_{2} \mathrm{Sb}_{2} \mathrm{Te}_{5}$ segments on the phenomenon of Einstein ring, Figure S 3 illustrates the propagation of the incident wave ($\lambda=500 \mathrm{~nm}$) across the curvatures that are divided into $6,9,12$ and 15 slabs respectively. As can be observed, even the basic discretization of the required index profile (6-layered structure) can collimate the guided-wave. Thus, our design demonstrates an excellent tolerance of fabrication. The effect of the number of the $\mathrm{Ge}_{2} \mathrm{Sb}_{2} \mathrm{Te}_{5} \mathrm{segments}$ on the other functions can be found in Figs.S4-S6.

Figure S3.The propagation of E (left column) and E_{z} (central column) through the surface of (a) 6-layered, (b) 9-layered, (c) 12 -layered, and (d) 15 -layered Rinehart-shaped curvature at $\lambda=500 \mathrm{~nm}$, where the Einstein's ring phenomenon is imitated. The radial cross sections of the different discretization process are illustrated in the right columns.

Figure S4. The propagation of E_{z} (right column) through the surfaces of (a) 6-layered, (b) 9-layered, (c) 12 -layered, and (d) 15 -layered Rinehart-shaped curvature at $\lambda=500$ nm, where the optical invisibility phenomenon is imitated. The radial cross sections of the different discretization process are shown in the left columns.

Figure S5.The propagation of E_{z} (right column) through the surfaces of (a) 6-layered, (b) 9-layered, (c) 12-layered, and (d) 15 -layered Rinehart-shaped curvature at $\lambda=500 \mathrm{~nm}$, where the Luneburg lens is imitated. The radial cross sections of the different discretization process are illustrated in the left columns.

Figure S6.The propagation of E_{z} (right column) through the surfaces of (a) 6-layered, (b) 9-layered, (c) 12 -layered, and (d) 15 -layered Rinehart-shaped curvature at $\lambda=500 \mathrm{~nm}$, where the Maxwell fish eyes lens is imitated. The radial cross sections of the different discretization process are illustrated in the left columns.

Section 5. The multi-functions in the Rinehart-shaped surface at the different wavelengths

Figure S7. The propagation of E (left column) and E_{z} (central column) through the surface of 9-layered Rinehart-shaped curvature at (a) $\lambda=450 \mathrm{~nm}$, (b) $\lambda=550 \mathrm{~nm}$, (c) $\lambda=600 \mathrm{~nm}$, and (d) $\lambda=650 \mathrm{~nm}$, where the Einstein ring phenomenon is imitated. The radial cross sections of the structure at the different wavelengths are shown in the right column.

Figure S8. The propagation of E_{z} (left column) through the surface of 9 -layered Rinehart-shaped curvature at (a) $\lambda=450 \mathrm{~nm}$, (b) $\lambda=550 \mathrm{~nm}$, (c) $\lambda=600 \mathrm{~nm}$, and (d) $\lambda=650 \mathrm{~nm}$, where the optical invisibility is imitated. The left column shows the radial cross sections of the discretized Rinehart-shaped surface at the different wavelengths.

Figure S9. The propagation of E_{2} (left column) through the surface of 9 -layered Rinehart-shaped curvature at (a) $\lambda=450 \mathrm{~nm}$, (b) $\lambda=550 \mathrm{~nm}$, (c) $\lambda=600 \mathrm{~nm}$, and (d) $\lambda=650 \mathrm{~nm}$, where the Luneburg lens is obtained. The left column shows the radial cross sections of the discretized Rinehart-shaped surface at the different wavelengths.

Section 6. The conditions of the $\mathrm{Ge}_{2} \mathrm{Sb}_{2} \mathrm{Te}_{5}$ slabs for the various functions.

Table S1. The corresponding crystallization proportion, time durations, and refractive index of each $\mathrm{Ge}_{2} \mathrm{Sb}_{2} \mathrm{Te}_{5}$ slab for the invisible cloaking at $\lambda=500 \mathrm{~nm}$

Layer	Crystallization ratio	Time duration (ns)	Refractive index
\#Ground	0	0	3
\#1	16.7%	8	2.85
\#2	27.8%	14	2.75
\#3	44.4%	22	2.6
\#4	53.3%	26	2.52
\#5	63.3%	31	2.43
\#6	73.3%	37	2.34
\#7	83.3%	42	2.25
\#8	92.2%	46	2.17
\#9	100%	50	2.10

Table S2. The corresponding crystallization proportion, time durations, and refractive index of each $\mathrm{Ge}_{2} \mathrm{Sb}_{2} \mathrm{Te}_{5}$ slab for the Maxwell fish-eye lens $\lambda=500 \mathrm{~nm}$

Layer	Crystallization ratio	Time duration (ns)	Refractive index
\#Ground	100%	50	2.1
$\# 1$	100%	50	2.1
$\# 2$	97.2%	48	2.13
$\# 3$	93.4%	46	2.17
$\# 4$	87.3%	43	2.23
$\# 5$	79.3%	39	2.31
$\# 6$	67.9%	33	2.42
$\# 7$	53.5%	26	2.56
$\# 8$	36.3%	18	2.72
$\# 9$	0	0	3.0

Table S3. The corresponding crystallization proportion, time durations, and refractive index of each $\mathrm{Ge}_{2} \mathrm{Sb}_{2} \mathrm{Te}_{5}$ slab for the Einstein ring at $\lambda=500 \mathrm{~nm}$

Layer	Crystallization ratio	Time duration (ns)	Refractive index
\#Ground	0	0	3
$\# 1$	98%	49	2.12
$\# 2$	98%	49	2.12
$\# 3$	97%	48	2.13
$\# 4$	97%	48	2.13
$\# 5$	95%	47	2.14
$\# 6$	92%	46	2.17
$\# 7$	89%	44	2.2
$\# 8$	84%	42	2.24
$\# 9$	76%	38	2.32

Section 7. Description of the supporting movie.

It shows that the wavefront of a guided wave propagating across the layered curvature can be dynamically modulated via the stream of $t_{\text {bias. }}$. Our device possesses an excellent performance of the continuous reconfigurability and versatile reprogrammable functions. The dynamic variations of the refractive index and temperature of each $\mathrm{Ge}_{2} \mathrm{Sb}_{2} \mathrm{Te}_{5}$ layer for the different functionalities are presented simultaneously. However in order to simplify the movie, we only plot out the temperature distributions of the \#Ground layer, layer \#1 and \#9.

