A Densely Packed Sb₂O₃ Nanosheets-Graphene Aerogel toward Advanced Sodium-Ion Batteries

Jing Zhou^a, Bingyi Yan^a, Jie Yang^b, Yun Yang^b, Wei Zhou^b, Hao Lan^b, Hua Wang^b* and Lin Guo^b*

^{a.} School of Chemistry Engineering, Northeast Electric Power University, Jilin 132012 P.R. China

^b School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering Key Laboratory of Bio-Inspired Smart Interfacial

Science and Technology of Ministry of Education Beihang University, Beijing 100191, P.R. China

E-mail: wanghua8651@buaa.edu.cn, guolin@buaa.edu.cn

Fig S1. SEM images of (a) hydrolytic intermediate product, (b) GO@Sb₂O₃ and (c) RGO@Sb₂O₃ composites. (d) The XRD patterns of hydrolytic intermediate product, GO@Sb₂O₃ and RGO@Sb₂O₃ composites.

Fig S2. SEM images of (a), (b) bare Sb_2O_3 and (c), (d) RGO@Sb_2O_3.

Fig S3. XRD patterns of samples obtained by annealing RGO@Sb₂O₃ and Sb₂O₃ at 800 °C in air atmosphere.

Fig S4. Charge/discharge curves of the bare Sb_2O_3 electrode at a current density of 0.1 Ag⁻¹.

Fig S5. Cycling stability of RGO at the current density of 0.1 A g^{-1} .

Fig S6. (a) CV curves of RGO@Sb₂O₃ electrode collected in the potential range of 0.01-2.5 V at scanning rates of 0.1, 0.2, 0.3, 0.5, and 1.0 mV s⁻¹. (b) The relationship between I_p and $v^{1/2}$ for RGO@Sb₂O₃ electrode.