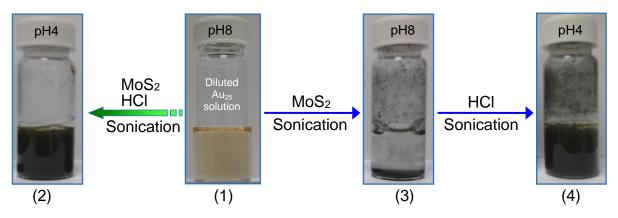
Electronic Supplementary Material (ESI) for Nanoscale.

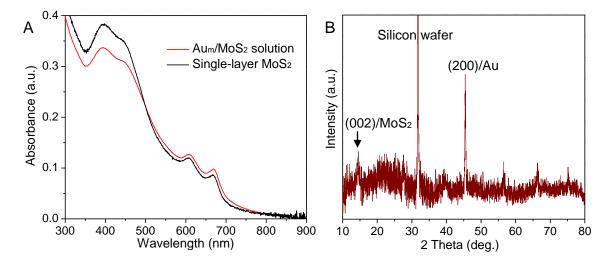
## BSA-caged metal clusters to exfoliate MoS<sub>2</sub> nanosheets towards their hybridized functionalization

Guijian Guan,\*<sup>a</sup> Shuhua Liu,<sup>a</sup> Yuan Cheng,<sup>b</sup> Yong-Wei Zhang,\*<sup>b</sup> and Ming-Yong Han\*<sup>a</sup>

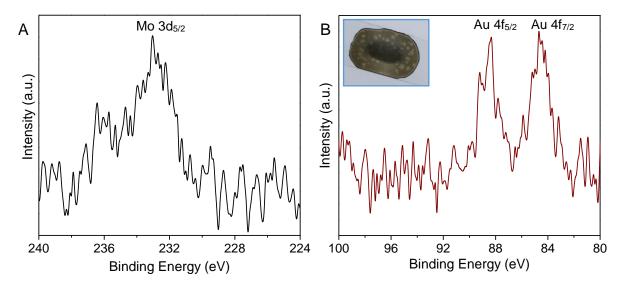
<sup>a</sup> Institute of Materials Research and Engineering, A\*STAR, 2 Fusionopolis Way, Singapore 138634


E-mail: guan\_guijian@imre.a-star.edu.sg my-han@imre.a-star.edu.sg

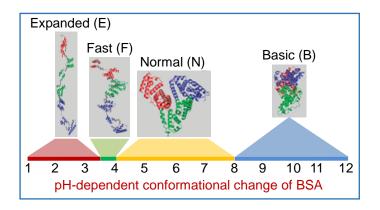
<sup>b</sup>Institute of High Performance Computing, A\*STAR, 1 Fusionopolis Way, Singapore 138632


E-mail: zhangyw@ihpc.a-star.edu.sg

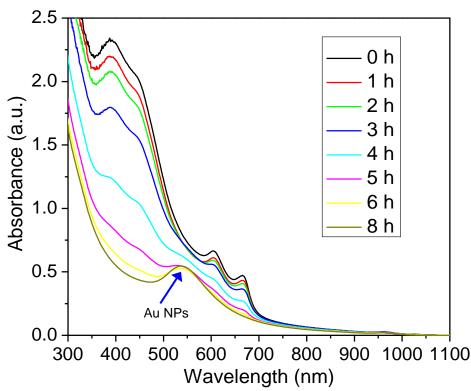
## **Calculation Method.**


*Binding energies of different species with*  $Ag^+$  *ions* Ag *atom.* The plane wave code Vienna *ab initio* simulation package (VASP) was used to simulate the binding energies of different species with  $Ag^+$  ions and Ag atom within the framework of density functional theory (DFT). First, the individual energy of species or compounds was calculated via the conformation optimization by using projector augmented wave method with the PW91 functional. Then, the binding energies were determined by calculating the difference between the energy of compound and the energy of individual species in total.




**Fig. S1** pH-dependent exfoliation of  $MoS_2$  nanosheets in the solution of BSA-caged Au<sub>25</sub> clusters. After diluting 2 mL of as-purified Au<sub>25</sub> clusters in PBS solution with distilled water by 5 times (1), the resulting pH8 solution was adjusted to pH4 with 1M HCl followed by introducing 50 mg of  $MoS_2$  powder and sonicating for 48 h to produce Au<sub>m</sub>/MoS<sub>2</sub> nanosheets (2). For comparison, the direct addition of  $MoS_2$  powder into the as-diluted Au<sub>25</sub> solution at pH8 did not lead to effective exfoliation of  $MoS_2$  powder upon sonication for 48 h (3). The further adjustment of pH from 8 to 4, the exfoliation of  $MoS_2$  nanosheets occurred upon sonication for 48 h (4).




**Fig. S2** Characterization of  $Au_m/MoS_2$  nanosheets: (A) UV-vis absorption spectra and (B) XRD pattern. The ultrathin thickness of MoS<sub>2</sub> layers in  $Au_m/MoS_2$  nanosheets is revealed by their similar absorption peaks to that of single-layer MoS<sub>2</sub> together with the weak intensity in XRD peak of MoS<sub>2</sub> nanosheets at ~15°. The presence of  $Au_m$  NPs is revealed by XRD peak at ~46° resulted from Au (200). Due to the epitaxial growth of  $Au_m$  NPs on MoS<sub>2</sub> nanosheets interfaced via (111) planes, the XRD peak from Au (111) is not observed.



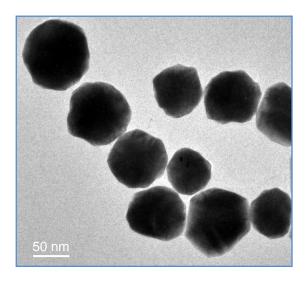
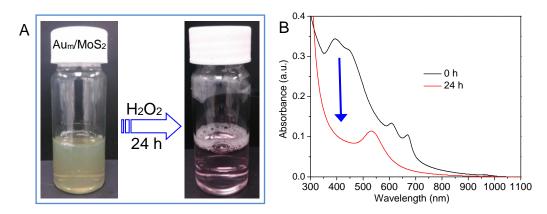
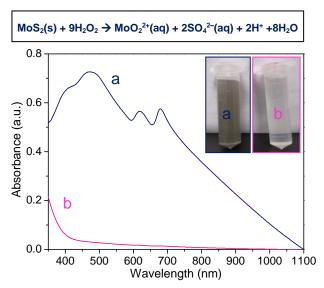
**Fig. S3** X-ray photoelectron spectroscopy (XPS) spectra of  $Au_m/MoS_2$  nanosheets for analyzing the elements of (A) Mo and (B) Au. The XPS sample was prepared by dropping and drying  $Au_m/MoS_2$  nanosheets on glass substrate, as shown in the inset optical image in (B).

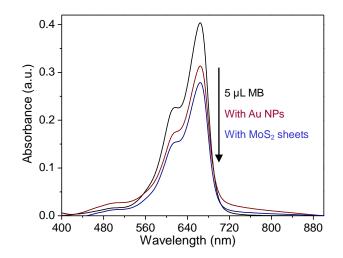


**Fig. S4** Conformations of BSA at different pH values. BSA has a typical conformation with the "heart" shape at pH 4.3–8.0 while expanding to adopt a faster migrating form at 4.3–3.5, and further stretched at pH < 3.5. At pH > 8.0, BSA takes a basic conformation with loss of rigidity.

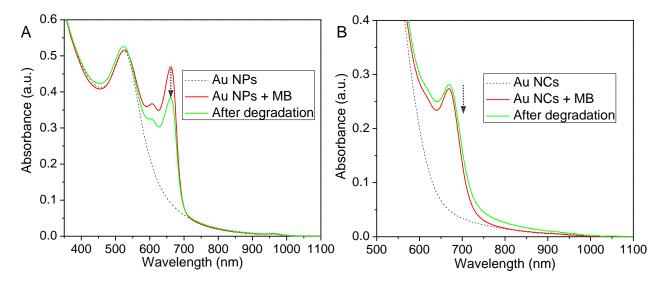


**Fig. S5** UV-vis absorption spectral evolution from  $Au_m/MoS_2$ ,  $Au_{m+n}/MoS_2$  nanosheets to 50 nm Au NPs after adding 50 mM H<sub>2</sub>O<sub>2</sub> into  $Au_m/MoS_2$  solution. The absorption peaks of MoS<sub>2</sub> nanosheets at 400, 605 and 666 nm gradually decrease with the increase of incubation time until disappear at 8 h. Meanwhile, a new absorption peak is observed at 540 nm to indicate the formation of Au NPs.

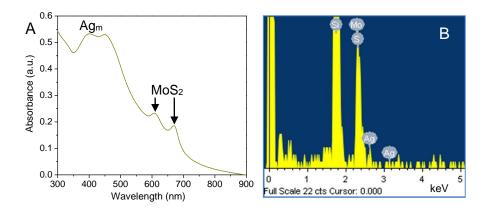






Fig. S6 TEM image of Au NPs obtained after adding  $H_2O_2$  to 50 mM in the solution of Au<sub>m</sub>/MoS<sub>2</sub> nanosheets and incubating for 8 h.




**Fig. S7** Optical and spectral change of  $Au_m/MoS_2$  nanosheets in pH4 solution upon the addition of 50 mM H<sub>2</sub>O<sub>2</sub> for 24 h. (A) Optical images and (B) UV-vis absorption spectra of  $Au_m/MoS_2$  solution after reaction with H<sub>2</sub>O<sub>2</sub> for 24 h. The color change from greenish brown to magenta and corresponding evolution of absorption spectra indicate that the further growth of Au NPs occurred upon the introduction of H<sub>2</sub>O<sub>2</sub> accompanied by the dissolution of MoS<sub>2</sub> nanosheets.

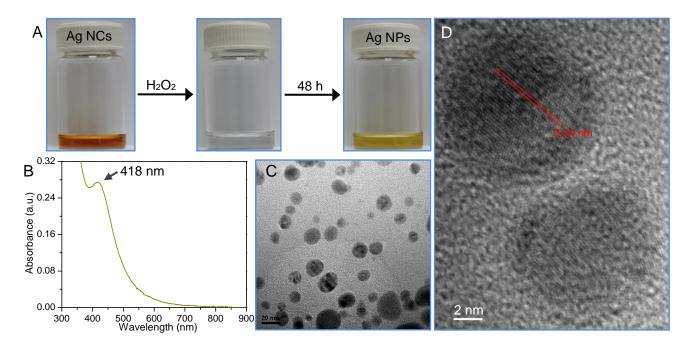



**Fig. S8** UV-vis absorption spectra and optical images (inset) of  $MoS_2$  in pH4 solution before (a) and after treatment by 50 mM  $H_2O_2$  for 24 h (b). The absorption peaks of  $MoS_2$  disappeared accompanied with the color change from brown to colorless, indicating the chemical dissolution of  $MoS_2$  in  $H_2O_2$  solution.

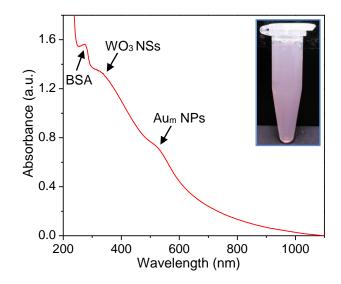


**Fig. S9** Photocatalytic degradation of methylene blue (MB) by Au NPs or MoS<sub>2</sub> nanosheets. The black line is the UV-vis absorption spectrum of 5  $\mu$ M MB solution. The red and blue lines are the UV-vis absorption spectra of 5  $\mu$ M MB solution after photocatalytic degradation by Au NPs and MoS<sub>2</sub> nanosheets, respectively. Experimentally, the photocatalytic degradation of MB was performed under a solar simulator for 40 min, and then the resulting solutions were centrifuged at 10000 rpm to remove Au NPs or MoS<sub>2</sub> nanosheets before collecting the spectra of supernatants. According to the change of absorption intensity, the percentages of photocatalytic degradation are calculated to be 22.5% and 30% for Au NPs and MoS<sub>2</sub> nanosheets, respectively.

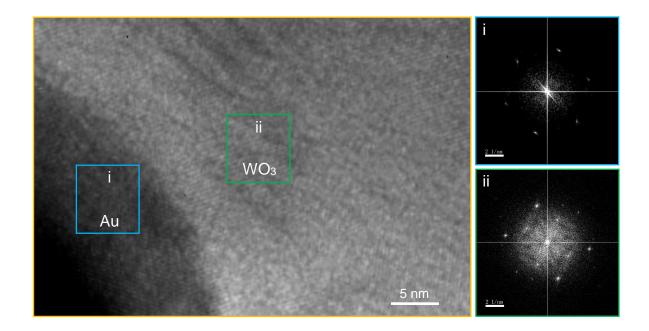



**Fig. S10** Photocatalytic degradation of MB in the solutions of Au NPs (A) and Au<sub>25</sub> nanoclusters (Au NCs) (B). Experimentally, an aqueous solution of 5  $\mu$ M MB in the presence of Au NPs or NCs was stirred for 10 min, and then left under a solar simulator for 40 min before collecting their absorption spectra. Based on the change of absorption intensity, the percentages of photocatalytic degradation were calculated to be 19.5% and 3.5% for Au NPs and Au NCs, respectively. As compared to the measurement of supernatant after removal of Au NPs, the in-situ measured result has a smaller value due to the scattering of Au NPs.

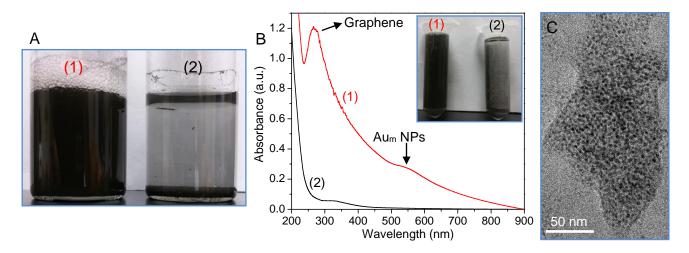



**Fig. S11** Experimental evidences for the production of Ag<sub>m</sub>/MoS<sub>2</sub> nanosheets: (A) UV-vis absorption spectrum, and (B) EDX image on silicon substrate.

**Table. S1** The calculated energies of individual species and their complex pairs for revealing the growth mechanism of Ag NPs from Ag nanoclusters, which were calculated by using the first-principle software VASP with the PW91 functional.


| Species                | Ag <sup>0</sup>                  | Ag⁺      | –SR⁻     | OH-      | RSSR     |
|------------------------|----------------------------------|----------|----------|----------|----------|
| Energy (eV)            | -1025.70                         | -1019.84 | -482.55  | -452.84  | -961.70  |
|                        |                                  |          |          |          |          |
| Pairs                  | Ag <sup>o</sup> –Ag <sup>o</sup> | Ag⁰–Ag⁺  | Ag⁺–SR⁻  | Ag⁺ –OH⁻ | Ag⁺–RSSR |
| Energy (eV)            | -2053.99                         | -2047.99 | -1507.77 | -1477.85 | -1985.03 |
| Binding<br>Energy (eV) | 2.59                             | 2.45     | 5.38     | 5.17     | 3.49     |




**Fig. S12** Production of Ag NPs in the basic solution of BSA-caged Ag NCs upon treating with 50 mM  $H_2O_2$ . (A) Optical observation for the growth process. (B) UV-vis absorption spectrum of the Ag NPs with a plasmonic peak at 418 nm. (C) Low-resolution and (D) high-resolution TEM images of Ag NPs. The fringe spacing of 0.24 nm is indexed to (111) reflection of face-centered cubic silver.



**Fig. S13** UV-vis absorption spectrum and optical image (inset) of the solution containing  $Au_m/WO_3$  nanosheets, which was obtained by sonicating 10 mL of pH4 solution containing 50 mg of WO<sub>3</sub> powder, 50 mM H<sub>2</sub>O<sub>2</sub> and 2 mL of as-purified Au<sub>25</sub> NCs in PBS solution.



**Fig. S14** Fast Fourier transform patterns in the selected regions as indicated in high-resolution TEM image of  $Au_m/WO_3$  nanosheets, which is used to confirm the hybridization of WO<sub>3</sub> nanosheets with Au NPs.



**Fig. S15** Exfoliation of graphite into graphene by using BSA-caged Au<sub>25</sub> clusters. (A) Optical images after sonicating graphite for 48 h in the aqueous solution of  $H_2O_2$  in the presence (1) and absence (2) of Au<sub>25</sub> clusters. The as-exfoliated solutions were first centrifuged at 4000 rpm for 20 min and then the precipitate was re-dispersed into pH4 solution via sonication. (B) UV-vis absorption spectra and optical images (inset) of the obtained solutions after further centrifugation at 1000 rpm for 10 min. (C) TEM image of Au<sub>m</sub>/graphene nanosheets.