Electronic Supplementary Information

Bi-metallic boride electrocatalysts with enhanced activity for oxygen evolution reaction

Jian Zhang^a, Xianxian Li^a, Yiteng Liu^a, zhaowei Zeng^a, Xu Cheng^a, Yadong Wang^{*a,b}, Wenmao Tu^{*a}, and Mu Pan^{a,b}

^{a.} State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China. E-mail: ywang@whut.edu.cn; tuwm@whut.edu.cnFax: +86-27-87879468; Tel: +86-27-87651839

^{b.} Key Laboratory of Fuel Cell Technology of Hubei Province, Wuhan University of Technology, Wuhan 430070, PR China.

Scheme S1. Schematic illustration for the preparation process of Ni-Co boride.

Figure S1. (a) SEM image of Co-10Ni-B-sp. (b) TEM image of Co-10Ni-B-sp.

 $\label{eq:solution} Figure \ S2. \ (a) \ N_2 \ adsorption-desorption \ isotherms \ of \ Co-10 Ni-B. \ (b). \ N_2 \ adsorption-desorption \ isotherms \ of \ Co-10 Ni-B-sp.$

Table S1. Elemental composition of B and Co in C	o-B, Co-5Ni-B	, Co-10Ni-B, Co-	-15Ni-B, Co-20Ni-B, Ni-B
--	---------------	------------------	--------------------------

Sample	Coposition(wt%)			Molar content of Ni	
	Со	Ni	В	Ni/(Ni + Co) atm%	
Co-B	75.04%		5.67%	0%	
Co-5Ni-B	79.79%	3.58%	6.81%	4.31%	
Co-10Ni-B	73.07%	7.04%	6.99%	8.82%	
Co-15Ni-B	70.31%	11.12%	7.42%	13.71%	
Co-20Ni-B	58.94%	13.82%	6.62%	19.06%	
Ni-B		90.61%	3.22%	100%	

Table S2. Comparison of the OER activities of catalysts from literature.

Catalyst	Substrate	Overpotential	Tafel slope	Electrolyte	reference
		(mV vs. RHE)	(mV dec ⁻¹)		
Co-10Ni-B	GC	330 mV	73.3	1 M KOH	This work
		10 mA cm^{-2}	mV dec ⁻¹		
Co-10Ni-B-sp	GC	310 mV	66	1 M KOH	This work
		10 mA cm^{-2}	mV dec ⁻¹		
Co-B-500°C	FTO	380 mV	45.0	0.1 M KOH	S 1
		10 mA cm^{-2}	mV dec ⁻¹		
Ni-B-300°C	GC	380 mV	89	1 M KOH	S 2
		10 mA cm^{-2}	$mV dec^{-1}$		
CoBi/GNS	GC	290 mV	53	1 M KOH	S 3
		10 mA cm^{-2}	$mV dec^{-1}$		
Co-B/ZIF 67	GC	320 mV	75	1 M KOH	S 4
		10 mA cm^{-2}	$mV dec^{-1}$		
Co-Mo-B	GC	320 mV	155	1 M KOH	S 5
		10 mA cm^{-2}	mV dec ⁻¹		
FeCo2.3Ni-B	GC	274 mV	38	1 M KOH	S 6
		10 mA cm^{-2}	mV dec ⁻¹		
NiCo2(SOH)x	Ni foam	290 mV	47	1 M NaOH	S 7
		10 mA cm^{-2}	mV dec ⁻¹		
NiCoO2/C PMRAs	GC	366 mV	83.97	1 M KOH	S 8
		20 mA cm^{-2}	mV dec ⁻¹		
NiCoP	Ni foam	320 mV	37	1 M KOH	S 9
		10 mA cm^{-2}	mV dec ⁻¹		
Ni _{1.85} Fe _{0.15} P	Ni foam	270 mV	96	1 M KOH	S 10
		20 mA cm^{-2}	mV dec ⁻¹		

References

- J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Sun, C. Somsen, M. Muhler and W. Schuhmann, *Advanced Energy Materials*, 2016, 6, 1502313.
- J. Masa, I. Sinev, H. Mistry, E. Ventosa, M. de la Mata, J. Arbiol, M. Muhler, B. Roldan Cuenya and W. Schuhmann, *Advanced Energy Materials*, 2017, 1700381.
- P. Chen, K. Xu, T. Zhou, Y. Tong, J. Wu, H. Cheng, X. Lu, H. Ding, C. Wu and Y. Xie, Angewandte Chemie, 2016, 55, 2488-2492.
- Y. Li, H. Xu, H. Huang, L. Gao, Y. Zhao and T. Ma, *Electrochemistry Communications*, 2018, 86, 140-144.
- 5. S. Gupta, N. Patel, R. Fernandes, S. Hanchate, A. Miotello and D. C. Kothari, *Electrochimica Acta*, 2017, **232**, 64-71.
- J. M. V. Nsanzimana, Y. Peng, Y. Y. Xu, L. Thia, C. Wang, B. Y. Xia and X. Wang, Advanced Energy Materials, 2018, 8, 1701475.
- L. Peng, J. Wang, Y. Nie, K. Xiong, Y. Wang, L. Zhang, K. Chen, W. Ding, L. Li and Z. Wei, ACS Catalysis, 2017, 7, 8184-8191.
- 8. H. Xu, Z.-X. Shi, Y.-X. Tong and G.-R. Li, Advanced materials, 2018, 1705442.

- H. Liang, A. N. Gandi, D. H. Anjum, X. Wang, U. Schwingenschlogl and H. N. Alshareef, Nano letters, 2016, 16, 7718-7725.
- 10. P. Wang, Z. Pu, Y. Li, L. Wu, Z. Tu, M. Jiang, Z. Kou, I. S. Amiinu and S. Mu, *ACS applied materials & interfaces*, 2017, **9**, 26001-26007.