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The phase field method

Derivation and justification of the governing equations

The derivation below follows the classic references on the phase-field method.1–4 The Ginzburg-

Landau free energy equation uses the spatial distribution of a continuous order parameter (the

phase field ψ) to determine the energy of the system:1

H[ψ, T ] =

∫

V

{1
2
|W∇ψ|2 + f [ψ(−→x ), T (−→x )]}d3x, (S1)

In which the first term of the integrand corresponds to the interface energy, with W being the

interface width, and the second term is the bulk free energy density, as a function of the local phase

and temperature. In this work, a two-dimensional isothermal system is considered. Dropping the

temperature field (T (−→x )) and rewrite Equation (S1) in 2D, we have

H[ψ] =

∫

S

{1
2
|W∇ψ|2 + f [ψ(−→x )]}d2x =

∫

S

L[ψ,∇ψ]d2x. (S2)

The phase field evolution obeys a dissipative Allen-Cahn equation:

∂ψ

∂t
= −KδH

δψ
, (S3)

in which the variation derivative will be written as

∂ψ

∂t
= −KδH

δψ
= −K{∂L

∂ψ
−∇ ∂L

∂∇ψ} = −K(
∂f

∂ψ
−W 2∇2ψ). (S4)

Taking a characteristic time constant of adatom attachment τψ = 1/K, we have

τψ
∂ψ

∂t
= W 2∇2ψ − ∂f

∂ψ
, (S5)

where f denotes the bulk contribution of the free energy density.
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Traditionally, f takes the form of a double-well potential, with two local minima corresponding

to the two phases in transition. This potential is suitable to simulate a monolayer growth, with

ψ = 0 being the precursor phase, ψ = 1 the deposited film phase, and a smooth transition between

0 and 1 as the interface.5 To simulate multilayer growth, the order parameter ψ is selected such

that ψ/2 represents the height of the epilayer surface, and ψs/2 is the height of the surface of the

substrate (or the underlying layer), in units of monolayer thickness. Thus, when f takes the general

functional form of A cos[π(ψ − ψs) + B] + Cψ, it satisfies the criteria below:

(1) f has multiple equally spaced local minima, each of which occurs when the deposited film

height ((ψ−ψs)/2) increases by one full monolayer. In other words, the neighboring local minima

of f with respect to ψ have equal distances of ∆ψ = 2;

(2) The free energy changes as the deposited film increases in thickness. The constant C

has the physical significance of the free energy difference between the deposited film and the

precursor. Under deposition conditions, in which the film phase has lower free energy than that of

the precursors, and deposition happen spontaneously, the free energy should decrease, thus C < 0.

The oversaturation of the precursor (u) contributes to f in two parts. First, it shifts the local

minima of f with respect to ψ, such that at a higher oversaturation, the system has higher momen-

tum for the film to grow thicker. Thus mathematically, u contributes to the phase shift parameter

B. u also contributes to the free energy difference C, as the degree of oversaturation of the pre-

cursor influences the free energy of the precursor phase, hence the free energy difference between

the two phases. Without loss of generality, the coefficient A reflects the strength of the potential,

which is independent to ψ, when considering the limit of small supersaturations.4 Karma and Plapp

proposed that a free energy density of

f(ψ) =

√
1 + λ2u2

π
cos[π(ψ − ψs) + sin−1

λu√
1 + λ2u2

]− λuψ (S6)

can well reflect the contribution of the supersaturation of the precursor within the functional dis-

cussed above.
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Inserting Equation (S6) into (S5), we have

τψ
∂H

∂t
= −∂H

∂ψ
= W 2∇2ψ + sin[π(ψ − ψs)] + λu{1 + cos[π(ψ − ψs)]}, (S7)

which is the governing equation of the phase field model of this work.2

Anisotropy of the interface energy

The term W 2∇2ψ derived from

−δ
1

2
|W∇ψ|2
δψ

= ∇∂ 1

2
|W∇ψ|2
∂∇ψ = W 2∇2ψ, (S8)

assumes an isotropic and hence constant W . However, in this work, the interface width W takes

the form of

W (θ) = W0{1 + δ[1 + cos(νθ)]}, θ = atan2(
∂ψ

∂y
,
∂ψ

∂x
), (S9)

to simulate the growth of the trigonal domains of the TMDs. In this case, the variation derivative

in Equation (S8) becomes:6

− δ 1
2
|W (θ)∇ψ|2

δψ

=∇∂ 1

2
|W (θ)∇ψ|2
∂∇ψ

=W (θ)2∇2ψ + 2W (θ)
dW (θ)

dθ
|∇ψ|ẑ · ∇ × ∇ψ

|∇ψ| + {[dW (θ)

dθ
]2 +W (θ)

d2W (θ)

dθ2
}|∇ψ|∇ × ∇ψ

|∇ψ| .

(S10)

Equation (S6) ensures that the minima of f fall at a fixed value in the vicinity of ψ−ψs = 2n+1,

in which n is integer. In this sense, the integer n can be used to record the layer number of the

deposited multilayer film. In order to simulate the AB stacking growth driven by a two-layer-deep
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screw dislocation, Equation (S9) can be changed to

W (θ) =











W0{1 + δ[1 + cos(νθ)]}, n is odd

W0{1 + δ[1 + cos(νθ + π)]}, n is even

(S11)

The coupling constant λ

Following previous works,2,5,7 the parameters in Equation (S7) take the unit time scale of τψ and the

length scale W0, and become non-dimensionalized. Without the loss of generality, the system can

always rescale to make the coupling coefficient λ and the diffusion coefficient of the precursor D

the only two independent variables. λ connects the phase field ψ with the precursor supersaturation

field u. For the physical significance of λ, vide infra.

The phase field model itself merely provides a numerical framework that can provide phe-

nomenological description of the film growth. In order for the model to have physical significance,

it has to be correlated to the sharp interface model:

∂u

∂t
= D∇2u− u

τs
+ F − 1

2

∂ψ

∂t
,

vn = D[(
∂u

∂n
)+ − ∂u

∂n
)−],

u = d0κ, (S12)

where vn is the interface normal velocity, (∂u/∂n)+/− is the normal concentration gradient on the

lower (+) and upper (-) side of the step, and κ is the curvature of the interface. Karma et al. have

demonstrated that under the thin-interface limit, the phase-field equations can be written as2,3,8

∂u

∂t
= D∇2u− u

τs
+ F − 1

2

∂ψ

∂t
,

vn = D[(
∂u

∂n
)+ − ∂u

∂n
)−],

u = d0κ+ a1(
τψ
λW

− a2W

D
)vn, (S13)
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In order for the vn term to disappear in the third equation to correspond to the sharp-interface

model in Equation (S12), λ should be chosen as λ = τψD/a2W , thus losing its independence. In

the same reference, it has been calculated that a2 = 0.510442, and the parameters are chosen as

listed in Table 1 in the main text.

Selection of a single precursor in the model

There has been significant debate whether the locale of the reaction is in the gas phase or on

the substrate. Many studies have proposed that, especially in a CVD process, the chalcogenides

have formed in the gas phase before their deposition onto the substrate.9 In this sense, because

the phase transformation described in the model of this work is the transition between solid and

the ad-molecule “gas” phase, using one field for the precursor realistically captures the formation

mechanism of the experimental condition.

In many synthesis methods such as MOCVD and MBE, separate precursors do assemble them-

selves after adsorption onto the surface, and the chalcogen-metal ratio is an important factor that

influences the growth. Specifically, the chalcogen-metal ratio mainly affects the growth at the

atomic level, such as the film continuity,10 the relative stability of flake edges,7,11 and the chem-

ical constituents of the flake and homogeneous nuclei,9,12 etc. A continuum method such as the

phase-field model is not suitable to describe these atomistic properties. Instead, supplementary

first-principles calculations are required. These topics have been covered in detail in our previous

work.10,12

Meanwhile, for a quantitative comparison or prediction, a phase-field method can include more

details based on the selection of precursors and the specific reactions involved. However, this work

aims at finding the generic growth patterns after defect based heterogeneous nucleations, therefore,

too many additional details may begin to derail from the theme of this work. Similar methods have

proved effective to use a single precursor to describe the growth behavior of layered chalcogenides

in a generalized perspective.7,13

6



The uniformity of the diffusion coefficient

Anisotropic diffusion will play a role in the growth morphology. Meca et al. conducted a compre-

hensive study focused on this factor.5,14 Although these works were done on graphene, many of

the conclusions in their work are transferrable to the model in this work. Generally speaking, the

anisotropy of the diffusion of the precursor and the anisotropy of the domain itself (edge energy,

reaction kinetics, etc.) work cooperatively in the determination of the shape of the domain.

In this work, an isotropic diffusion across the substrate is assumed. In many cases, where

chalcogenides with trigonal symmetry are deposited onto substrates with hexagonal symmetry,

such as highly oriented pyrolytic graphite, the trigonal domain will align with the hexagonal sub-

strate. As a result, the precursors have facile diffusion paths towards the six stable and metastable

edges, and the diffusivity can be treated as isotropic for a good approximation. Even when the

substrate itself has three-fold symmetry, such as sapphire and the TMD itself, the diffusion of the

precursors on the first atomic layer of these substrates is not affected significantly, and still behaves

with a six-fold diffusion symmetry.

Even if the substrate has diffusion anisotropy that is inconsistent with the symmetry of the

deposited flake, it is noteworthy that from the second layer on, the film growth is in fact autoepitaxy,

i.e., the growth of the same material on itself. According to the discussions above, from the second

layer on, it is suitable to select an isotropic diffusion coefficient.

As a confirmation of these assumptions, simulations with a non-uniform diffusion coefficient

D are performed. Two types of anistropy of the diffusion coefficient, namely the 4-fold and the

6-fold anisotropy, are selected. For each symmetry, 2 cases are studied (Figure S1). The simulation

results show that in the early stage, the domain shape shows a combined influence of the substrate

anisotropy and the structural anisotropy. As the domain grows in size, the influence of the diffusion

anisotropy diminishes, because the diffusion of the precursors on the film can compensate the

insufficient precursor from the substrate.

It is noteworthy that with a changing diffusion coefficient, in every integration iteration, the

matrix of the governing diffusion equation Eqation (2) in the main text will be refreshed, and
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Figure S1: The simulation result of the growth on substrates with different diffusion anisotropy.

The initial screw dislocation is the same as Figure 2a in the main text. The simulation shows that

the diffusion anisotropy has an influence on the first layer in the initial stages. However, as the

domain grows in size, due to the on-flake diffusion, the influence of the anisotropy of D becomes

less significant. Moreover, from the second layer on, the growth morphology will not be affected

by a non-uniform D on the substrate.
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factorized, which is a computationally expensive process. Since the anisotropy of D does not play

a significant role after reaching the steady state, it is a reasonable approximation to consider an

isotropic and uniform D.

The dependence of spiral frequency on flux

(a) (b) (c)

Figure S2: Phase-field simulation results of growths driven by a single spiral, under increasing flux

(left to right: F=0.05, 0.1, 1).

Figure S2 shows the phase-field simulation results under different flux, with other parameters

unchanged. With similar area, the width of the step edge decreases with increasing flux. This is in

agreement with both the previous phase-field calculations and analytical models.3,15

Extended discussion on the obtaining of hexagonal islands

For the epitaxy on an isotropic substrate, the anisotropy of the film is determined by two factors:

the inequity on the structural stability of different edges (tuned by the anisotropy of W in Equation

(2) in the main text), and the inequity on reactivity of the respective edges (tuned by the anisotropy

of τψ), both of which depend on the chemical potentials of the precursors. The monolayers of a 2H

crystal, for example, WSe2, have a structure with trigonal symmetry. Under common conditions,

the edges with higher energy are simultaneously the ones with higher reactivity, therefore they
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quickly diminish during the growth, making the domain trigonal. For this type of crystal, there are

two scenarios to obtain hexagonal domains with parallel spiral lines:

(1) both the reactivity and energy of the two sets of edges are comparable. In order to establish

this condition in the phase field model, the rotational anisotropy ν takes the value of 6 (instead of

3 in the main text). τψ either conforms with W , taking rotation order of 6 and align with W , or is

uniform across the polar angle, as it is throughout the main text.

(2) the energy of the two sets of edges are not equal, but the edges with lower energy are tuned

by the precursor environment to have higher reactivity. In the phase field model, this condition

means that W takes the rotation order of 3, as it is in the main text, but τψ also takes an isotropic

form as:

τψ(θ) = τψ0{1 + δψ[1 + cos(νψθψ)]}, θψ = atan2(
∂ψ

∂y
,
∂ψ

∂x
) + ϕψ, (S14)

and ϕψ takes the value of π so that it is 180◦ rotation with respect to the anisotropy of W .

Both these conditions will result in the hexagonal domains (Figure S3), but they are in fact

driven by different mechanisms. As these discussions are based on the comparison of edges only,

these conclusions are transferrable to the growth initiated by other nucleation mechanisms beside

screw dislocations.

Additional characterization of molecular beam epitaxy (MBE)

grown Bi2Se3

A bulk Bi2Se3 crystal, grown by chemical vapor transport (CVT), was purchased from HQ graphene

and concurrently characterized along with the MBE-grown samples for crystallographic confirma-

tion. Figure S4 shows the Raman shifts for both the MBE-grown and CVT reference samples,

where the E2
1g and A2

1g peaks are clearly visible and overlap closely. Figure S5 shows out-of-plane

XRD data for the MBE sample grown on sapphire. The dominant (006) peak position is consis-
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Figure S3: Driven by the same nucleation (Figure 2a in the main text), under normal conditions, the

domain assumes trigonal symmetry (Figure S1b). However, if either of the conditions described in

this section is satisfied, a hexagonal domain will be obtained due to either equalized edge energy

(a), or the common result by the respective thermodynamic stability and kinetic inertia (b).

tent with theoretical predictions for quintuple-layered Bi2Se3. Furthermore, the FWHM of 0.239

indicate a high degree of crystallinity in the MBE-grown film. During deposition, the MBE-grown

film was monitored by in-situ reflection high-energy electron diffraction (RHEED). The images

seen in Figure S6 show the diffraction patterns along the [101̄0] and [112̄0] azimuthal directions.

The ability to independently observe the different diffraction patterns at their corresponding az-

imuthal angles indicates rotational alignment with the single-crystal c-plane sapphire substrate.

Furthermore, the sharpness of the RHEED streaks indicates an exceptionally flat top surface. Fig-

ure fig:XPS shows the XPS scans of the Bi 4f and Se 3d core levels of the MBE-grown film. The

sample was exposed to atmospheric conditions for 15 minutes prior to loading into the XPS sys-

tem, but still shows no sign of oxidation. Figure S8 shows a cross-sectional scanning transmission

electron microscopy (STEM) image of the MBE-grown Bi2Se3. The film clearly exhibits a high

degree of flatness, the quintuple-layer structure, uniformity, and is absent of visible defects.
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Figure S4: Raman spectra of chemical vapor transport (CVT) and MBE-grown Bi2Se3 films show-

ing overlapping peak positions.

Figure S5: X-ray diffraction (XRD) scan showing a sharp peak at the expected angle for the (006)

diffraction plane.
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Figure S6: Reflection high energy electron diffraction (RHEED) patterns along the [101̄0] and

[112̄0] azimuthal directions.

(a) (b)

Figure S7: X-ray photoelectron spectroscopy (XPS) spectra of the Bi 4f and Se 3d core levels of

Bi2Se3 grown on c-plane sapphire.

Figure S8: Cross-sectional transmission electron microscopy (TEM) of the MBE-grown Bi2Se3 on

c-plane sapphire.
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(a)

(b)

Figure S9: The change in the edge configuration of the isolated MoS2 with respect to the chemical

potential of sulfur vapor. Left is the metal zigzag edge, and right is the sulfur zigzag edge. The

red triangle denotes the chemical potential of sulfur at 800K and 0.1 MPa. Under this condition,

the sulfur zigzag edge is fully chalcogenized, but the Mo zigzag edge is only half-chalcogenized.

However, when a substrate is present, the fully chalcogenized Mo zigzag edge will be stabilized

by 0.31 eV.16,17 In this sense, both metal and chalcogen zigzag edges are fully sulfurized by con-

sidering the substrate effect.
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Additional theoretical mechanism analysis

The case of MoS2 is taken as an example to investigate the comparison of the stabilities and growth

rates of different edges. The degree of chalcogenization at the domain edge of MoS2 is a function

of the chemical potential of the precursors. Due to the much lower partial pressure of Mo precursor

vapor (e.g. MoO3) compared with that of S vapor in a typical S rich synthesis condition, the change

on the chemical potential of S will determine the edge morphology, as discussed in the following.

Figure S9 shows the edge evolution with respect to the chemical potential of sulfur, in which A-C

are the metal zigzag edges, and D-F are the chalcogen zigzag edges. A and D are fully sulfurized

edges, E is three-quarter-sulfurized, B and F are half-sulfurized, and C is quarter-sulfurized. The

following reaction is considered to determine the edge morphology at different chemical potential

of sulfur vapor:

(A) → (B) + 2S, ∆G1 = EB + 2µS − EA, (S15)

(B) → (C) + S, ∆G2 = EC + µS − EB, (S16)

(D) → (E) + S,∆G3 = EE + µS − ED, (S17)

(E) → (F ) + S,∆G4 = EF + µS − EE. (S18)

The chemical potential of sulfur vapor is calculated by

µS(T, p)− µS(T = 0K, p0) = [µS(T, p)− µS(T, p0)] + [µS(T, p0)− µS(T = 0K, p0)]

= kBT ln(
p

p0
) + [∆hS(T, p0)− T∆SS(T, p0)], (S19)

where ∆hS(T, p0) = hS(T, p0) − hS(T = 0K, p0), ∆SS(T, p0) = SS(T, p0) − SS(T = 0K, p0),

and p0 = 0.1MPa. ∆hS(T, p0), ∆SS(T, p0) can be found in standard standard thermodynamic

tables (http://kinetics.nist.gov). µS(T = 0K, p0) is the chemical potential µ0
S of sulfur bulk calcu-

lated through DFT at T = 0K.

Under a given set of growth conditions, for example in Figure S9, 800 K and 0.1MPa, the
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chalcogen zigzag edge is more easily fully chalcogenized than the metal zigzag edge. However,

in the presence of a substrate, both Mo and S zigzag edges are fully chalcogenized, therefore the

climb-up phenomenon will be observed in this condition.16,17

The edge growth energy barriers are calculated through a sequential reaction scheme, by con-

sidering the growth process as sequentially adding gas phase MoS2 units. This is based on the fact

that Mo precursor vapor will react with S vapor in the gas phase forming the MoS2 fragment,9

then deposit on the substrate. The growth barriers arise from the fact that the most stable adsorp-

tion site of a MoS2 fragment is different from the lattice site before the edge is fully covered by

MoS2 fragments. In order for the edge to grow conformally after full coverage, these distorted

MoS2 fragments need to be activated back to the lattice sites, which yields transition states and

barriers as demonstrated in Figure S10. The difference of 0.33 eV on the activation energy makes

the growth rate of the metal zigzag edge much slower than that of the chalcogen zigzag edge in the

sulfur rich synthesis condition (exp(0.33eV/kT ) = 120).

These barrier calculations also show that when the MoS2 fragment is directly attached onto

the domain edges, the thermodynamically unstable edge also has the lower barrier. Therefore,

in normal conditions, MoS2 flakes have the shape of a triangle. If through this mechanism the

domain assumes the shape of a hexagon, it is a result of a fine tuning of the chemical potential of

the precursors, so that the two sets of edges have the comparable stabilities and growth rates.11,18

The mechanistic analysis of the formation of Frank-Read source

for 1T-TMDs and Bi2Se3

First of all, similar to MoS2, both ZrS2 and Bi2Se3 prefer metal vacancies to align linearly than

distributing sparsely (Figure S11a,b). However, different from MoS2, due to the existence of in-

version symmetry within the monolayer, the dimerization tendency of dangling chalcogen atoms

is resolved between the two adjacent edges (Figure S12 for ZrS2, and Figure S13 for Bi2Se3). The

inter-edge dimerization naturally causes edge lift-up and generate a line of chalcogen dangling

16



(a)

(b)

Figure S10: The proposed attachment mechanism. The newly attached group is circled. For both

the metal zigzag edge and the chalcogen zigzag edge, an energy barrier exists to reconfigure the

structure from a stable adsorption site to the lattice site.

bonds. When the line of dangling bonds is ended on both side, it will form the Frank-Read core

similar to 2H-TMDs.

Kinetic Monte Carlo simulation of the evolution of an in-flake

void during deposition

The KMC simulation follows the method described in the reference19 with the parameters calcu-

lated via first-principles in our previous work.10 The simulations start from a circular void (Figure

S14a), and are performed under chalcogen-rich conditions, with a flux of 1 ML/s and a chalcogen-

metal ratio of 200. The substrate temperature is set at 773 K.

Figure S14 shows the starting configuration and several simulation results. Three types of de-

fect configurations are observed. Simple voids (Figure S14b) do not contribute to the multilayer

growth mechanism discussed in the manuscript, therefore they are dropped from further discus-
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(a)

(b)

Figure S11: Change of formation energy of linearly arranged metal vacancies in monolayer ZrS2

(a) and Bi2Se3 (b) with respect to the linear length. The formation energies of individual sparse

metal vacancies and infinitely long metal vacancy line are marked by the dashed line on top and

bottom, respectively.
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Figure S12: The top view (a,b) and side view (c,d) of ZrS2 with linearly arranged metal vacan-

cies, before (a,c) and after (b,d) structural optimization through chalcogen dimerization across the

vacancy line. Metal atoms (Zr) are represented by gray orbs, and chalcogen atoms (S) by yellow

orbs. Lift-up of one edge is observed after chalcogen dimerization (d), with a line of dangling

bonds exposed (red arrow) as nucleation site.
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Figure S13: The top view (a,b) and side view (c,d) of Bi2Se3 with linearly arranged metal vacan-

cies, before (a,c) and after (b,d) structural optimization through chalcogen dimerization across the

vacancy line. Metal atoms (Bi) are represented by gray orbs, and chalcogen atoms (Se) by yellow

orbs. Lift-up of one edge is observed after chalcogen dimerization (d), with a line of dangling

bonds exposed (red arrow) as nucleation site. When the metal vacancy line is terminated at the

ends, the lift-up in the middle of the line will form a Frank-Read core (e,f).
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Figure S14: The kinetic Monte Carlo simulation of the evolution of an in-flake void. The left panel

shows the top view of the sandwiched structure, with the pixel color coded to represent metal (red)

and chalcogen (white/grey) atoms. To show the metal vacancies underneath the chalcogen layer,

the middle layer is isolated and visualized in the right panel. (a) the initial structures of an in-

flake void. (b) the formation of voids after deposition. (c) the formation of linearly aligned metal

vacancies (arrowed). (d) metal vacancies forming 120-degree broken lines (arrowed).
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sions. Linearly aligned vacancies can be naturally formed from the diminishing of a void (arrowed

in Figure S14c). In addition, linearly aligned vacancies can join and form a broken line of vacan-

cies, with two ends and a vertex. Due to the atomic configuration of the TMDs, the broken lines

are often oriented 120◦ (arrows in Figure S14d). The chalcogen dimerization induced strain also

applies to the broken lines: in-line dimerization at the two ends exerts compressive strain along

the broken line, and out-of-line dimerization away from the ends and at the vertex exerts tensile

strain perpendicular to the lines. The unbalanced strain, under kinetic perturbation, can cause the

climb-up of one edge over the other, forming a new Frank-Read source.
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