Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

Structural Isomerism for Gold Nanoclusters

Wen Wu Xu^{1,2}, Xiao Cheng Zeng*2,3,4, and Yi Gao*1

¹Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. ²Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA. ³Department of Chemical & Biomolecular Engineering and Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA. ⁴Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026, China

*Correspondence should be addressed to: X. C. Zeng (<u>xzeng1@unl.edu</u>) or Y. Gao (<u>gaoyi@sinap.ac.cn</u>)

Figure S1. The structural decompositions of $Au_{52}(SR)_{32}$ isomers Au_{52} _Iso1 (a and b) and Au_{52} _Iso2 (c and d). Magenta and dark yellow denote two possible valence states of Au atoms, i.e., 1*e* and 0.5*e*. S is represented in dark green. The R groups are omitted for clarity.

Figure S2. The structural decompositions of $Au_{30}(SR)_{18}$ isomers Au_{30} _Iso1 (a and b) and Au_{30} _Iso2 (c and d). Magenta and dark yellow denote two possible valence states of Au atoms, i.e., 1*e* and 0.5*e*. S is represented in dark green. The R groups are omitted for clarity.

Figure S3. The structures of two type of Au_{14} cores. The same color denotes one Au_4 unit in each Au_7 packing face to face with one Au_4 unit in another Au_7 .

Figure S4. (a) The blue Au_7 and its six surrounded magenta Au atoms (marked by numbers 1, 2, 3,...6) to form a quasi-octahedral Au_{13} unit. (b) The magenta Au_7 and its six surrounded blue Au atoms (marked by numbers 1, 2, 3,...6) to form a quasi-octahedral Au_{13} unit. The Au atoms are presented in yellow, wine, and blue, respectively. S is presented in dark green. The R groups are omitted for clarity.

Figure S5. The structures of Au_{28} _Iso1, Au_{28} _Iso2, Au_{28} _Iso3, and Au_{28} _Iso4 with TBBT and SCH₂Ph ligands. Au, S, C, and H are in gold, red, dark grey, light grey respectively.

Table S1 The vdW and DFT energies of Au_{28} _Iso1, Au_{28} _Iso2, Au_{28} _Iso3, and Au_{28} _Iso4 with TBBT and SCH₂Ph ligands.

	TBBT		SCH ₂ Ph	
	vdW	DFT	vdW	DFT
Au ₂₈ _Iso1	0.00	0.00	0.00	0.34
Au ₂₈ _Iso2	0.80	0.53	0.64	0.03
Au ₂₈ Iso3	1.19	0.47	0.21	0.00
Au ₂₈ Iso4	0.50	1.32	0.68	0.21