

Figure S1. Optical micrographs of (a) ZIF-8 and (b) Au@ZIF-8 precursor and samples carbonized at 800 °C, (c) NC800 and (d) Au@NC800.

Figure S2. SEM images of (a) ZIF-8, (b) NC600, (c) NC800 and (d) NC900.

Figure S3. SEM image of NC800-PEDOT.

Figure S4. TEM images of (a) ZIF-8 and (b) NC800.

Table S1. Summary of peaks in FT-IR spectra of ZIF-8, NC600, NC800, NC900, Au@ZIF-8,

Wavenumber/cm ⁻¹	Functional groups		
3372	О-Н		
2153	CN triple bond		
1678	C=C/C=O		
1586	C=N		
1424/1461	COO		
1305	N-H		
993/1143	C-C/C-O-C		

Au@NC800 and NC800-PEDOT.

Figure S5. (a) N_2 adsorption/desorption and (b) pore-size distribution of NC600, NC800 and NC900.

Sample	$S_{BET} (m^2/g)$	V_{total} (cm ³ /g)	$V_{micro}(cm^3/g)$	V_{meso} + V_{macro} / V_{micro}
ZIF-8	1343.18	1.61	0.53	2.02
Au@ZIF-8	1181.53	0.83	0.25	2.27
NC600	423.64	0.82	0.12	6.10
NC800	975.40	1.24	0.14	8.09
NC900	461.81	1.06	0.12	8.17
NC800-PEDOT	1185.99	1.55	0.32	3.82
Au@NC800	953.73	1.20	0.06	19.75

 Table S2. Summary of the porous characteristics for all samples.

Figure S6. TG curve of NC800 and Au@NC800.

Figure S7. CV curves of (a) NC600, (b) NC800, (c) NC900, (d)Au@NC800 and (e)NC800-PEDOT

Figure S8. GC curves of (a)NC800, (b)NC800, (c)NC900, (d)Au@NC800 and (e)NC800-PEDOT

samples at various current densities.

Figure S9. (a) *iR*-drops of the electrodes as a function of current density, (b-f) continuous GC curves of (b)NC800, (c)NC800, (d)NC900, (e)Au@NC800 and (f)NC800-PEDOT with a current density of 0.1 A/g.

Figure S10. Currents responded with the applied voltage during 3-cycle CDI operation for (a,b) NC800, (c,d) Au@NC800 and (e,f) NC800@PEDOT samples.

Carbon material	Initial salt	Cell	Salt	Ref
	concentration	voltage	adsorption	
	(mg/L)	(V)	(mg/g)	
Carbon aerogel	~50	1.2	1.4	S 1
Ordered mesoporous carbon	~50	0.8	0.93	S2
Carbon nanofiber webs	~95	1.6	4.6	S 3
Reduced graphite	. 65	2.0	37	S 4
oxidate-resol	~ 0.5	2.0	5.2	
PCP	500	1.2	13.86	S5
NC800	~58	1.2	8.52	S 6
BNPC	500	1.4	16.63	S7
hCNT-PCP	1000	1.2	20.5	S 8
e-CNT-PCP	500	1.2	16.98	S9
NC800	~58	1.2	8.36	This work
Au@NC800	~58	1.2	14.31	This work
NC800PEDOT	~58	1.2	16.18	This work

 Table S3. Comparison of electrosorption capacities of various carbon electrodes reported in literature.

References:

[1] J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, J.F. Poco, Capacitive deionization of NaCl and NaNO₃ solutions with carbon aerogel electrodes, Journal of the Electrochemical Society, 143 (1996) 159-169.

[2] L.X. Li, L.D. Zou, H.H. Song, G. Morris, Ordered mesoporous carbons synthesized by a modified sol-gel process for electrosorptive removal of sodium chloride, Carbon, 47 (2009) 775-781.
[3] G. Wang, C. Pan, L.P. Wang, Q. Dong, C. Yu, Z.B. Zhao, J.S. Qiu, Activated carbon nanofiber webs made by electrospinning for capacitive deionization, Electrochim. Acta, 69 (2012) 65-70.
[4] Z. Wang, P. Dan, L. Zhang, C. Zhang, Z. Lin, Z. Hao, Effective developmentation because itime.

[4] Z. Wang, B. Dou, L. Zheng, G. Zhang, Z. Liu, Z. Hao, Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material, Desalination, 299 (2012) 96-102.

[5] Y. Liu, X.T. Xu, M. Wang, T. Lu, Z. Sun, L.K. Pan, Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization, Chemical Communications, 51 (2015)

12020-12023.

[6] N.L. Liu, S. Dutta, R.R. Salunkhe, T. Ahamad, S.M. Alshehri, Y. Yamauchi, C.H. Hou, K.C.W.

Wu, ZIF-8 derived, nitrogen-doped porous electrodes of carbon polyhedron particles for high-performance electrosorption of salt ions, Sci Rep, 6 (2016) 7.

[7] Z. Wang, T.T. Yan, J.H. Fang, L.Y. Shi, D.S. Zhang, Nitrogen-doped porous carbon derived from a bimetallic metal-organic framework as highly efficient electrodes for flow-through deionization capacitors, J. Mater. Chem. A, 4 (2016) 10858-10868.

[8] X.T. Xu, M. Wang, Y. Liu, T. Lu, L.K. Pan, Metal-organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization, J. Mater. Chem. A, 4 (2016) 5467-5473.

[9] Y. Liu, J.Q. Ma, T. Lu, L.K. Pan, Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization, Sci Rep, 6 (2016).