

Fig. S1 Scanning electron microscopy (SEM) images of ZIF-8 (a), FeCl3-CZIF (b), PB-CZIF (c).

Fig. S2 SEM EDS (a) and TEM image (b) of Fe-CZIF-800-10.

Fig. S3 XPS survey spectra (a) and high-resolution N 1s X-ray photoelectron spectroscopy (b-f) of different Fe-CZIF samples and CZIF-900.

Fig. S4 Thermogravimetric analysis (TGA) curves of different Fe-CZIF samples under air atmosphere.

Fig. S5 Nitrogen adsorption–desorption isotherms of FeCl₃-CZIF at 77 K (inset shows the corresponding DFT pore size distributions).

Fig. S6 (a) Rotating disk electrode (RDE) polarization curves of the Fe-CZIF-T-10 samples, (b) The Koutecky-Levich (K-L) plots of Fe-CZIF-800-10 from the RDE polarization curves at rotation rates from 400 to 2025 rpm.

Fig. S7 LSV curves for ORR on Fe-CZIF-800-10 (a) and CZIF-900 (b) at 1600 rpm in O₂-saturated 0.1 M KOH with and without 10 mM KSCN.

Fig. S8 LSV curves of Fe-CZIF-800-10 tested in wide potential at 1600 rpm

Fig. S9 (a) LSV curves of the samples at different rotation rates and corresponding (b) K-L plots at different potentials.

Fig. S10 Electron transfer numbers of Pt/C and Fe-CZIF catalysts derived from their corresponding LSV curves at a scan rate of 1600 rpm.

Fig. S11 The impedance characteristics of Fe-CZIF-800-n (a) and CZIF-900 (b).

Fig S12 (a) The CV curves at 5 mV s⁻¹ and (b) GCD curves at 1 A g⁻¹ of Fe-CZIF-800-n.

Fig. S13 Specifc capacitance versus current density for Fe-CZIF-T-10 (a) and Fe-CZIF-800-n (b).

	C (at%)	N (at%)	O (at%)	Fe (at%)
Fe-CZIF-800-10	81.36	13.78	4.21	0.65
Fe-CZIF-800-5	81.93	12.07	5.46	0.54
Fe-CZIF-800-15	89.51	6.69	3.09	0.72
Fe-CZIF-900-10	92.66	3.68	3.17	0.49
Fe-CZIF-700-10	74.98	19.06	5.29	0.67
CZIF900	89.97	8.09	1.93	/

Table S1 Elemental qualification of various catalysts determined using XPS

Table S2 The iron content of CZIF-900 and Fe-CZIF samples calculated by the thermogravimetric analysis (TGA)

	Sample	Iron content(wt%)		
	CZIF900	/		
	Fe-CZIF-900-10	5.90		
	Fe-CZIF-800-10	6.13		
	Fe-CZIF-700-10	8.77		
	Fe-CZIF-800-5	2.09		
	Fe-CZIF-800-15	7.58		
Pt/C	0.979	0.828		

 Table S3 ORR performance of porous carbon-based materials reported in the

 representative literature. All catalysts were tested in 0.1 M KOH

	Electrode materials	Onset potential (V vs. NHE)	Half-wave potential (V vs. NHE)	Limiting Current Density (mA/cm ²)	References
		0.96	0.70	4.50	Energy Environ. Sci.
Carbon-L	0.80	0.70	4.39	2014. 7, 442-450	

Pt/C	0.979	0.826	5.75	This work
Fe-CZIF-800-10	0.982	0.830	5.68	This work
Fe,S/NGC-900	0.95	0.77	4.9	ACS Appl. Mater. Inter. 2016, 8, 19533- 19541
LDH@ZIF-67-800	0.94	0.83	5.5	Adv. Mater. 2016, 28, 2337-2344
Fe/N-CNT	0.96	0.82	/	J. Mater. Chem. A. 2016, 4, 1694
Fe ₃ C/C-800	1.05	0.83	/	Angew. Chem. Int.Ed. 2014, 53, 3675
Fe-N-CNFs-800	0.944	0.824	5.1	Angew. Chem. Int. Ed. 2015, 54, 8179- 8183
FNCT800-100	0.933	0.828	5.32	Nanoscale. 2017, 9, 17364- 17370
LHNHPC	0.98	0.865	4.4	Appl Catal B-Environ 2017, 210, 57–66
Fe-SNC-900	0.979	0.834	7.2	Adv. Energy Mater. 2017, 7, 1602002

Electrode	Capacitance (F g ⁻¹)	Current density	References	
		(A g ⁻¹)		
Carbon-L-950	228	0.1	J. Mater. Chem. A.	
			2014, 2, 12873	
Carbon-ZS	285.8	0.1	Carbon.	
			2015, 85, 51-59	
	251	0.05	Chemical Communications.	
AS-ZC-800 251 0.25		0.25	2014, 50, 1519-1522	
PC1000@C	225	0.5	Electrochimica Acta.	
			2016, 196, 699–707	
Fe-CZIF-800-10	246	0.5	This work	
CZIF-900	207	0.5	This work	

Table S4 Capacitive performance of ZIF-8 derived materials reported in therepresentative literature. All Samples were tested in 6 M KOH