Electronic supplementary information (ESI)

An autonomous tumor-targeted nanoprodrug for reactive oxygen species-activatable dual-cytochrome c/doxorubicin antitumor therapy

Yuxia Pei,^{‡a} Menghuan Li,^{‡b} Yanhua Hou,^c Yan Hu,^{*,a} Guangyu Chu,^d Liangliang Dai,^a Ke Li,^a Yuxin Xing,^a Bailong Tao,^a Yonglin Yu,^a Chencheng Xue,^b Ye He,^a Zhong Luo,^{*,b} Kaiyong Cai ^{*,a}

^a Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.

^bSchool of Life Science, Chongqing University, Chongqing 400044, P. R. China.

^cChongqing Engineering Research Centre of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.

^dQingdao Branch, Institute of Acoustics, Chinese Academy of Sciences.

E-mail: huyan303@cqu.edu.cn, luozhong918@cqu.edu.cn, kaiyong_cai@cqu.edu.cn

Scheme S1. a) Synthesis of 4-nitrophenyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzyl carbonate(NBC) via hydrolysis of boronic acid within water and b) Modification scheme of Cytochrome c with NBC for ROS-activatable intracellular protein delivery.¹

Fig. S1 ¹H NMR spectra (400 MHz, 298 K) of 4-nitrophenyl 4-(4,4,5,5-tetramethyl-1,3,2- dioxaborolan-2-yl)benzyl carbonate.²

Materials	S _{bet}	V _P	BJH	pore
	(m²/g)	(cm ³ .g ⁻¹)		Diameter (n
				m)
YMSN	917.838	1.3536		4.004
YMSN-LA	403.366	0.5898		4.016
YMSN-NBC-Cyt c-NBC-LA	121.308	0.2284		3.589

Fig. S2 (a) Nitrogen adsorption/desorption isotherms and (b) pore size distributions of different YMSN-based samples determined by BET and BJH, respectively. (c) Porous characteristics of different YMSN-based nanostructures.

Fig. S3 TGA analysis of YMSN(a), YMSN-LA(b), YMSN-NBC-Cyt c-NBC (c) , YMSN-NBC-Cyt c-NBC-LA (d) and YMSN-NBC-Cyt c-NBC-LA @DOX (e), respectively.

Fig. S4 FTIR spectra of YMSN(a), YMSN-NH₂(b), YMS-LA (c), YMSN-NBC-Cyt c-NBC (d) and YMSN-NBC-Cyt c-NBC-LA (e), respectively. Specifically, YMSNs showed a strong absorption peak at 1059 cm⁻¹, which was due to the asymmetric stretching vibration of the Si-O-Si bonds. The other two peaks at 3440 cm⁻¹ and 1636 cm⁻¹ were assigned to the Si-OH bonds. After the conjugation of APTES, two new peaks emerged at 1634 cm⁻¹ and1559 cm⁻¹, which were due to the Amide I and II vibration modes, respectively. For the IR spectrum of YMSN-LA, it could be observed that the Amide I and II bands have strengthened significantly. Moreover, these two bands have shifted from 1634 cm⁻¹ and 1559 cm⁻¹ to 1637 cm⁻¹ and 1561 cm⁻¹, indicating the successful conjugation of LA units. A new peak at 1754 cm⁻¹ has appeared in the IR spectrum of YMSN-NBC-Cyt c-NBC, which was caused by the C=O bonds in the added NBC-Cyt c-NBC units. It could also be observed that Amide

I/II bands for YMSN-NBC-Cyt c-NBC have shifted to 1647 cm⁻¹ and 1529 cm⁻¹, respectively, which was caused by the enhanced vibration affected by the -NH-moiety on Cyt c. For the final product of YMSN-NBC-Cyt c-NBC-LA, the intensity of the NBC-associated wide band has decreased due to the conjugation of additional LA units, while the characteristic Amide I/II bands have further shifted to 1648 cm⁻¹ and 1530 cm⁻¹. ³

Materials	ζ-potential(mV)		
YMSN	-26.6±1.39		
YMSN-NH ₂	23.1±2.1		
YMSN-LA	-3.89±1.24		
YMSN-NBC-Cyt c-NBC	6.25±0.5		
YMSN-NBC-Cyt c-NBC-LA	-11.37±0.5		

 Table .S1
 Zeta potential of the nanoparticulate samples.

Fig. S5 Molecule size distribution of NBC modified Cyt c, measured by dynamic light scattering.

Fig. S6 Western blot analysis on the expression levels of cleaved caspase 3, cleaved caspase 9, Bcl-2 and Bax in HepG2 cells after incubation with TCPS, YMSN@DOX, DOX, and YMSN-NBC-Cyt c-NBC-LA@DOX.(p<0.05,**p<0.01)

Fig. S7 Enlarged TEM images showing the endocytosed YMSN and YMSN-NBC-Cyt c-NBC-LA in HepG2 cells.

Fig. S8 Quantification of the DOX and Cyt c loading capacity. UV-VIS spectrophotometer was applied to investigate the DOX loading in the YMSN-NBC-Cyt c-NBC-LA@DOX. The DOX loading capacity (DLC) was calculated using the equation: DLC (%) = Amount of loaded drug / Total Weight of YMSN-NBC-Cyt c-NBC-LA@DOX ×100%. The Cyt c loading in the same nanospecies was measured on a fluorescence spectrophotometer, in which the Cyt c molecules were fluorescently labelled with FITC. The Cyt c loading capacity (CLC) was calculated using the equation: CLC (%) = Amount of loaded Cyt c / Total weight of YMSN-NBC-Cyt c-NBC-LA@DOX ×100%, Panel a is the concentration-dependengt standard curve of DOX and Panel b is the concentration-dependengt standard curve of Cyt c.

References.

- 1. M. Wang, S. Sun, C. I. Neufeld, B. Perez-Ramirez and Q. Xu, *Angew. Chem. Int. Ed. Engl.*, 2014, **53**, 13444-13448.
- 2. J. L. Major Jourden and S. M. Cohen, *Angew. Chem. Int. Ed. Engl*, 2010, **49**, 6795-6797.
- 3. Z. Luo, K. Cai, Y. Hu, J. Li, X. Ding, B. Zhang, D. Xu, W. Yang and P. Liu, *Adv. Mater.*, 2012, **24**, 431-435.