Supplementary Information

Thermal stable core-shell Ni/nanorod-CeO₂@SiO₂ catalyst for partial

oxidation of methane at high temperatures

Shaohong Zhu, Xinyi Lian, Tingting Fan, Zhou Chen, Yunyun Dong, Weizheng Weng, Xiaodong Yi^{*}, Weiping Fang

National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China. E-mail: <u>xdyi@xmu.edu.cn</u>

Catalysts	Metal loading (wt%)	Reaction temperature	CH₄ conversion (%)	Amount of H atoms adsorbed (μmol/g)	TOF (s⁻¹)	References
		(°C)				
Ni/MgAl ₂ O ₄	10.0	800	79	10.8	37.6	16
Ni-350@meso-SiO ₂	43.3	750	93	7.3	37.9	17
NiO/3HL-ZrO ₂ -SiO ₂	9.9	800	92	_	0.035	18
Ni/SiO ₂ -GL	4.88	700	95	_	0.095	19
Rh–CeO ₂ /MgO	1.0	700	81	6.0	274	20
Rh–Co/MgO	0.3	700	76	3.7	420	21
2Pt-CeO ₂ ^{NP}	2.0	400	92	8.1	770	22

Table S1 Values of $\mathsf{TOF}_{\mathsf{CH4}}$ for various POM catalysts

catalysts	Surface area / m ² ·g ⁻¹	Average pore size /nm		
Ni/NR-CeO ₂	76	10.6		
Ni/NR-CeO ₂ @SiO ₂	60	20.3		
Ni@SiO ₂	138	18.6		

Table S2 Texture parameters of the catalysts according to Ar sorption

Fig. S1 NiO particle sizes distribution of (a) Ni/NR-CeO_2@SiO_2 and (b) Ni@SiO_2 $\,$

Fig. S2 (a) Ar adsorption-desorption isotherms and (b) pore size distribution curves of the catalysts

Fig. S3 XRD patterns of the commercial \mbox{CeO}_2

Fig. S4 XRD patterns of the Ni/NR-CeO_2@SiO_2 and Ni@SiO_2 catalysts reduced by H_2 at 750 $^\circ C$ for 1 h

Fig. S5 The TEM image of the Ni@SiO $_2$ catalyst after the POM reaction

Fig. S6 TG profiles of the Ni/NR-CeO $_2$ and Ni/NR-CeO $_2@SiO_2$ catalysts after the POM reaction

Fig. S7 TPO profiles of the Ni/NR-CeO $_2$ and Ni/NR-CeO $_2$ @SiO $_2$ catalysts after the POM reaction