Supporting Information

Diketopyrrolopyrrole-Based Carbon Dots for Photodynamic Therapy

Haozhe He,^{a,b} Xiaohua Zheng,^{a, c} Shi Liu,^a Min Zheng,^{*d} Zhigang Xie^{*a}, Yong Wang,^b Meng Yu,^b and Xintao Shuai^{*b}

^a State Key Laboratory of Polymer Physics and Chemistry, Changchun; Institute of

Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R, China.

Fax: +86-431-85262775; Tel: +86-431-85262775; E-mail: xiez@ciac.ac.cn

^b PCFM Lab of Ministry of Education, School of Materials Science and Engineering,

Sun Yat-sen University, Guangzhou 510275, P. R. China. Fax: +86-20-84112245;

Tel: +86-20-84110365; E-mail: shuaixt@mail.sysu.edu.cn

^c University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

^d School of Chemistry and life Science, Advanced Institute of Materials Science,

Changchun University of Technology, 2055 Yannan Street, Changchun, Jilin 130012,

P. R. China, E-mail: zhengmin@ciac.ac.cn

Supporting Information

Fig. S1. ¹H-NMR of DPP in DMSO-d₆.

Fig. S2. Particle size and PDI of the DPP CDs nanoparticles in PBS (pH 7.4)

with/without 10% FBS for different time periods determined by DLS.

Fig. S3. Fluorescence spectra of DPP CDs and CTS CDs.

Fig. S4. Normalized absorbance of DPP and DPP CDs after different time of irradiation (540 nm, 15 mW/cm²). Experiments were done on a UV-vis spectrometer.

Fig. S5. Absorption changes of CTS CDs under 540 nm laser irradiation (15

 mW/cm^2).

Fig. S6. The half maximal inhibitory concentration (IC50) values for DPP CDs and

CTS CDs against HepG2 cell lines by MTT assay.