Enhancing Electronic and Optoelectronic Performance of Tungsten Diselenide by Plasma Treatment

Yuan Xie^{*a*}, Enxiu Wu^{*a*}, Ruixue Hu^{*a*}, Shuangbei Qian^{*a*}, Zhihong Feng^{*a*}, Xuejiao Chen^{*a*}, Hao Zhang ^{*a*}, Linyan Xu^{*a*}, Xiaodong Hu^{**a*}, Jing Liu^{**a*}, Daihua Zhang^{**a*}

State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Opto-electronics Engineering Tianjin University, No. 92 Weijin Road, Tianjin, 300072, China E-mails: xdhu@tju.edu.cn; jingliu 1112@tju.edu.cn; zhangdaihua@gmail.com

Fig. S1 Transfer curves of WSe₂ FETs with different contact metals. (a). Ni/Au. (b). Cr/Au. (c). Ti/Au

Fig. S2: Raman spectroscopy (a) and XRD (b) of un-doped and doped WSe₂.

Fig. S3 (a) Contact resistance of the WSe₂ FET under different gate voltage. Linear fitting of total resistance of the un-doped WSe₂ (b) and doped WSe₂ (c) at Vgs = -20 V. Inset table is the detailed fitting information.

Fig. S4 Comparison of response and recovery time of un-doped (a) and doped (b) WSe₂ FETs.

To compare the response and recovery time of un-doped and doped WSe₂ more clearly, we define these as the signal takes to change between 0% and 100% of its entire range on the rising and falling edges.

Fig. S5: Photocurrent of doped WSe₂ photoconductor with different exposure time in air.