Supporting Information for

Hydrogen atom induced magnetic behaviors in two-dimensional materials: Insight on origination in the model of α -MoO₃

Junli Zhang,^{‡a} Jiecai Fu,^{‡a} Fangyi Shi,^a Yong Peng,^a Mingsu Si,^{*a}, Luigi Cavallo,^b

Zhen Cao*b

^aKey Laboratory of Magnetism and Magnetic Materials of the Ministry of Education,

School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P.

R. China

^bKing Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia

* Corresponding authors

E-mail: zhen.cao@kaust.edu.sa (Z. Cao); sims@lzu.edu.cn (M. Si)

‡These authors contributed equally to this work.

Fig. S1. Schematic of the home-made resistive heating setup to synthesize α -MoO₃ nanosheets.

Fig. S2. Schematic view of the calculated prototypical α -MoO₃ structure.

Add one extra H	Туре	Total Energy (eV)	ΔE (kcal/mol)
surface	terminal	-1056.3644	3.83735
sub-surface	bridge1	-1056.4809	1.15074
	bridge2	-1056.1780	8.13592
	terminal	-1056.5308	0.00000
	bridge1	-1056.5231	0.17757
	bridge2	-1056.1684	8.35731

Table S1 The relative energies corresponding to all possible configurations for hydrogen doped α -MoO₃.

Table S2 The relative energies corresponding to all possible configurations for α -MoO₃ with one oxygen vacancy.

Remove one O	Туре	Total Energy (eV)	ΔE (kcal/mol)
surface	terminal	-1045.1462	0.00000
	bridge1	-1044.9902	3.59752
	bridge2	-1043.4622	38.83472
sub-surface	terminal	-1045.1427	0.08071
	bridge1	-1044.9543	4.42541
	bridge2	-1044.9717	4.02414

Fig. S3. (a) Raman spectrum of pristine and hydrogenated α -MoO₃.

Fig. S4. (a) Representative TEM image (b) High magnification TEM image, (c) HRTEM image, (d) Corresponding FFT pattern of the pristine α -MoO₃ nanosheets.

Fig. S4a shows a representative TEM image of pristine α -MoO₃ nanosheets. We find that the α -MoO₃ nanosheets has a high dispersion, uniform size and smooth surface. The high magnification TEM image in Fig. S4b shows that the length and width of the nanosheets are about 10 µm and 650 nm, respectively. The thickness of α -MoO₃ NB is about 6.8 nm with a 4-layered structure which has been studied in our previous study¹². The high-resolution TEM image and corresponding FFT data both reveal the single crystallinity nature of the pristine α -MoO₃ nanosheets (Fig. 1e-g), without any impurity, stacking faults or amorphous region.

Fig. S5. Temperature-dependent ZFC and FC magnetization curves for pristine and hydrogenated α -MoO₃ samples in a field of 500 Oe.

Fig. S6. (a) EDX spectra of pristine and hydrogenated α -MoO₃. The spectra indicate that the samples compose of Mo and O, where the content of Cu and C come from the TEM grid.

Fig. S7. Hysteresis loops of fresh H-10 (black line) and preserved for 30 days (red line), and no obvious difference was observed. The stability of ferromagnetism is confirmed by the hysteresis loops, where there is no obvious difference between the samples.

Fig. S8 Calculated density of state (DOS) structure for MoO_3 with one oxygen vacancy.

Fig. S9 Calculated density of state (DOS) structure for hydrogen doped MoO₃.