Supplementary Information

Na₂C monolayer: a novel 2p Dirac half-metal with multiple symmetry-protected Dirac cones

Wei-xiao Ji,^{*} ^a Bao-min Zhang,^a Shu-feng Zhang, ^a Chang-wen Zhang,^a Meng Ding,^a Pei-ji Wang,^a and Ruiqin Zhang^{† b,c}

^a School of Physics and Technology, University of Jinan, Jinan 250022, China

^b Department of Physics, City University of Hong Kong, Hong Kong SAR

^c Beijing Computational Science Research Center, Beijing 100193, China

* Corresponding author. E-mail: <u>hellojiweixiao@163.com</u>

[†]Corresponding author. E-mail: <u>aprqz@cityu.edu.hk</u>

Figure S1 The (a) top and (b) side view of planar Na_2C monolayer structure. The yellow and brown balls represent Na and C atoms respectively.

Figure S2 The energy evolutions of MD at 300 K for 5 ps, with the final geometric structure of Na_2C monolayer after 5ps MD simulations.

Figure S3 (a) The geometric structure of Na₂C₂. (b) The bulk model of layered Na₂C. (c) The exfoliation energy calculated as a function of the separation(Δd) between two fractured parts. (d) The definition of *d* and *d*₀ in (c). The yellow and blue balls represent Na atoms in different sublayers, and brown balls for C atoms.

Figure S4 Spin configurations of ferromagnetism (FM) and anti-ferromagnetism (AFM), used to calculate the Curie temperature. The red (blue) triangles represent the up (down) spin.

Figure S5 The comparison of relative energy between ferromagnetic (FM) and anti-ferromagnetic (AFM) as a function of biaxial strains and extra charges.

Figure S6 The band structures of Na_2C with (a) the SOC strength artificially increased by ten times, and under biaxial strains of (b) -5% and (c) +5%.

Figure S7 The real space wave function at Dirac point K. The blue (orange) balls represent Na atoms in different layers, and brown balls are C atoms. The red (green) area shows the wave function with positive (negative) sign.

Figure S8 The real space wave function along M- Γ and Γ -K. The blue (orange) balls represent Na atoms in different layers, and brown balls are C atoms. The red (green) area shows the wave function with positive (negative) sign.

Figure S9 The contour of energy difference between the two bands that are closest to the Fermi level.

Figure S10 The band structures of Na₂C under symmetry reductions by moving carbon atom along the C_2 axis. The yellow and blue balls represent the Na atoms in different sublayers.

Figure S11 The band structures of Na₂C under symmetry reductions by (a) moving C along the z axis, (b) moving Na along the z axis, and (c) moving C along the long diagonal in the lattice plane.

The CIF file of the Na₂C monolayer:

data_Na2C						
_chemical_name_common			"Na2C"			,
_cell_length_a			4.06252			
_cell_length_b			4.06252			
_cell_length_c			20.00000			
_cell_angle_alpha			90			
_cell_angle_beta			90			
_cell_angle_gamma			120			
_space_group_name_H-M_alt			"P 1"			
_space_group_IT_number			1			
loop_						
_space_group_symop_operation_xyz						
"x, y, z"						
loop_						
_atom_site						
_atom_site_occupancy						
_atom_site_fract_x						
_atom_site_fract_y						
_atom_site_fract_z						
_atom_site_adp_type						
_atom_site_B_iso_or_equiv						
_atom_site_type_symbol						
C1	1.0	0.666667	0.333333	0.287109	Biso	1.000000 C
Na1	1.0	0.000000	0.000000	0.235792	Biso	1.000000 Na
Na2	1.0	0.333333	0.666667	0.338425	Biso	1.000000 Na