## **Electronic Supplementary Information**

## Target-Initiated Synthesis of Fluorescent Copper Nanoparticles for Sensitive and

## Label-Free Detection of Bleomycin

Dandan Zhang,<sup>a,‡</sup> Juan Hu,<sup>a,‡</sup> Xiao-yun Yang,<sup>b,‡</sup> Yanxia Wu,<sup>b,‡</sup> Wenmei Su,<sup>b</sup> and Chun-yang Zhang<sup>a,\*</sup>

<sup>a</sup> College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China

<sup>b</sup> Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China

\* Corresponding author. Tel.: +86 0531-86186033; Fax: +86 0531-82615258. E-mail: cyzhang@sdnu.edu.cn.



**Fig. S1** Measurement of fluorescence emission spectra in response to 1  $\mu$ M synthetic sequence. The synthesized sequence is used to mimic the DNAzyme-catalyzed cleavage product and performs the TdTase-assisted base extension. The sequence is 5'-GCG CCG CCG CAA AAT TCA CCA ACT AT <u>X</u>-3'. The underlined base (X) indicates the deoxyribonucleoside adenosine (A, green line), the ribonucleoside adenosine (rA, red line), the A

modified with PO<sub>4</sub> at the 3' terminal (A 3'-PO<sub>4</sub>, blue line), and the rA modified with PO<sub>4</sub> at the 3' terminal (rA 3'-PO<sub>4</sub>, magenta line), respectively. In the presence of the synthetic sequence without 3'-OH ends (blue line and magenta lines), low fluorescence signals are observed. In contrast, the enhanced fluorescence signals are detected in the presence of the synthetic sequences with 3'-OH ends (green line and red line) as a result of the staining of poly-T products by SYBR Gold. Moreover, the same fluorescence signals are observed in the presence of A (green line) and rA (red line). These results demonstrate that TdTase can incorporate a number of dNTPs to the 3'-OH ends of DNA and RNA.



**Fig. S2** Measurement of fluorescence emission spectra under different experimental conditions. The BLM concentration is 100 nM. The 1  $\mu$ M Hp1, 4  $\mu$ M Hp2 and 10 U of TdTase were used in the experiments. In the presence of Hp1 + BLM (black line), Hp1 + BLM + TdTase (blue line), Hp2 + BLM (cyan line), Hp2 + BLM + TdTase (magenta line), Hp1 + Hp2 + BLM (green line), low fluorescence signals are observed as a result of the staining of Hp1 and Hp2 by SYBR Gold. In contrast, an enhanced fluorescence signal is detected in the presence of Hp1 + Hp2 + BLM + TdTase (red line) as a result of the staining of poly-T products by SYBR Gold. These results demonstrate that the TdTase-assisted base extension reaction can only be triggered by target BLM in the presence

of specific Hp1 and Hp2.



**Fig. S3** (A) Measurement of fluorescence emission spectra in the absence of  $Zn^{2+}$  and  $Pb^{2+}$  (black line) and presence of 20  $\mu$ M Pb<sup>2+</sup> (magenta line), 20  $\mu$ M Pb<sup>2+</sup> + 2 U of PNK + 1 mM ATP (blue line), 10  $\mu$ M Zn<sup>2+</sup> (red line), and 10  $\mu$ M Zn<sup>2+</sup> + 2 U PNK + 1 mM ATP (green line), respectively. (B) Measurement of fluorescence emission spectra in the absence of Co<sup>2+</sup> (blue line) and presence of 0.25 mM Co<sup>2+</sup> (red line) and 0.5 mM Co<sup>2+</sup> (black line), respectively. All buffer contains 10  $\mu$ M Zn<sup>2+</sup>, 10 mM Mg<sup>2+</sup> and 100 nM Fe<sup>2+</sup>. (C) Measurement of fluorescence emission spectra in the absence of Mg<sup>2+</sup> (blue line) and presence of 10 mM Mg<sup>2+</sup> (red line) and 20 mM Mg<sup>2+</sup> (black line), respectively. All buffer contains 10  $\mu$ M Zn<sup>2+</sup>, 0.25 mM Co<sup>2+</sup>, and 100 nM Fe<sup>2+</sup>. (D) Measurement of fluorescence emission spectra in the absence of Fe<sup>2+</sup> (blue line) and presence of 100 nM Fe<sup>2+</sup>. (D) Measurement of fluorescence emission spectra in the absence of Fe<sup>2+</sup> (blue line) and presence of 100 nM Fe<sup>2+</sup>. (D) Measurement of

nM. The 1  $\mu M$  Hp1, 4  $\mu M$  Hp2 and 10 U of TdTase were used in the experiments.



Fig. S4 Real-time monitoring of the oxidative cleavage of Hp1 induced by different-concentration BLM.

| strategy                                 | assay    | requirement of    | read out | linear range   | LOD                 | ref. |
|------------------------------------------|----------|-------------------|----------|----------------|---------------------|------|
|                                          | time*    | labels            |          |                |                     |      |
| electrochemical assay                    | ~8 h     | electrochemical   | Turn-off | 100 pM - 100   | 100 pM              | 1    |
|                                          |          | label (ferrocene) |          | μΜ             |                     |      |
| electrochemical assay based on           | over 16h | electrochemical   | Turn-off | 0.07-910 nM    | 0.02 nM             | 2    |
| dual-amplification                       |          | label(MBA-AuNP    |          |                |                     |      |
|                                          |          | s/DA-AuNPs)       |          |                |                     |      |
| electrogenerated                         | ~12 h    | no                | Turn-off | 0.1-50 pM      | 0.03 pM             | 3    |
| chemiluminescence assay                  |          |                   |          |                |                     |      |
| colorimetric assay                       | ~20 min  | no                | Turn-on  | 25 nM - 1 μM   | 16 nM               | 4    |
| fluorescence quenching                   | no data  | no                | Turn-off | 0.09-2.0 μg/mL | 40 ng /             | 5    |
|                                          |          |                   |          |                | mL                  |      |
| exo III-aided DNA recycling              | ~40 min  | fluorescent label | Turn-on  | 0.1 nM - 1 μM  | 23 pM               | 6    |
| amplification-based fluorescent          |          | (FAM and BHQ)     |          |                |                     |      |
| assay                                    |          |                   |          |                |                     |      |
| WS <sub>2</sub> nanosheet quencher-based | ~23 min  | fluorescent label | Turn-on  | 0.5 nM - 1 μM  | 0.3 nM              | 7    |
| fluorescent assay                        |          | (FAM)             |          |                |                     |      |
| perylene derivative                      | ~12 h    | fluorescent label | Turn-on  | 5-500 nM       | 0.2 nM              | 8    |
| quencher-based fluorescent               |          | (FAM)             |          |                |                     |      |
| assay                                    |          |                   |          |                |                     |      |
| silver nanocluster-based                 | ~83 min  | no                | Turn-off | 100-500 nM     | 54 nM               | 9    |
| fluorescent assay                        |          |                   |          |                |                     |      |
| enzymatic polymerization-                | 100 min  | no                | Turn-on  | 1 fM - 5 nM    | 8.1 ×               | this |
| mediated synthesis of CuNPs-             |          |                   |          |                | 10 <sup>-16</sup> M | work |
| based fluorescent assay                  |          |                   |          |                |                     |      |

Table S1. Comparison of the proposed method with the reported methods for BLM assay

\*Assay time includes the preparation time. MBA-AuNPs/DA-AuNPs: 4-mercaptophenyl boronic acid-capped gold

nanoparticles and dopamine-capped gold nanoparticles. WS<sub>2</sub>: tungsten disulfide. LOD: limit of detection.

## References

- 1. B. C. Yin, D. Wu and B. C. Ye, Anal. Chem., 2010, 82, 8272-8277.
- 2. X. He, W. Liu, X. Zhang, X. Zhang and J. Chen, Anal. Methods, 2014, 6, 6893-6899.
- 3. Y. Li, C. Huang, J. Zheng, H. Qi, W. Cao and Y. Wei, *Biosens. Bioelectron.*, 2013, 44, 177-182.
- 4. Y. Qin, L. Zhang, G. Ye and S. Zhao, *Anal. Methods*, 2014, **6**, 7973-7977.
- 5. J. Liu, Z. Liu, X. Hu, L. Kong and S. Liu, *Luminescence*, 2008, 23, 1-6.
- 6. F. Gao, J. Lei and H. Ju, *Chem. Commun.*, 2013, **49**, 7561-7563.
- 7. Y. Qin, Y. Ma, X. Jin, L. Zhang, G. Ye and S. Zhao, *Anal. Chim. Acta*, 2015, 866, 84-89.
- 8. R.-M. Kong, N.-N. Sun, F. Qu, H. Wu, H. Wang and J. You, *RSC Adv.*, 2015, **5**, 86849-86854.
- 9. Y. Chang, P. Zhang, Y. Yu, Y. Q. Du, W. Wang and C. Z. Huang, *Anal. Methods*, 2013, 5, 6200-6204.