Supporting Information

Delivery of thrombolytic therapy using rod-shaped plant viral nanoparticles decreases risk of hemorrhage

Andrzej S. Pitek, ${ }^{a}$ Jooneon Park, ${ }^{a}$ Yunmei Wang, ${ }^{b}$ Huiyun Gao, ${ }^{\text {b }}$ He Hu, ${ }^{a}$ Daniel I. Simon, ${ }^{\text {b }}$ and Nicole F. Steinmetz. ${ }^{\text {acdef*\# }}$
a Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
${ }^{\text {b }}$ Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western
Reserve University School of Medicine, Cleveland, OH 44106, USA
${ }^{\text {c }}$ Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA
${ }^{d}$ Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
${ }^{e}$ Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
${ }^{f}$ Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA
\#present address: Department of NanoEngineering, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
*nsteinmetz@ucsd.edu

CONTENTS

I. Figure S1. UV-vis spectrum of TMV-tPA
II. Table S1. Densitometric analysis for the determination of tPA loading on TMV

Figure S1. UV-vis spectrum of TMV-tPA. Based on ratio between the absorbance at 646 nm ($\lambda_{\max }$ of sCy 5) and 260 nm ($\lambda_{\max }$ of TMV), it is determined that $108.6 \pm 11.8 \mathrm{sCy} 5$ molecules were conjugated to one TMV particle on average.

Table S1. Densitometric analysis for the determination of tPA loading.

	Band density [AU]			Fitting equation	$\begin{gathered} \mu \mathrm{g} \mathrm{tPA} / \\ 20 \mu \mathrm{~g} \mathrm{TMV} * \end{gathered}$	$\mu \mathrm{g} \mathrm{tPA} /$ mg TMV	Number of tPA/TMV**
	tPA $1 \mu \mathrm{~g}$	tPA $5 \mu \mathrm{~g}$	TMVcp-tPA				
Batch 1	4890.12	21621.18	4965.09	$y=0.0002^{*} x$	0.993	49.651	27.946
Batch 2	5733.46	23046.64	12838.65	$y=0.0002^{*} x$	2.568	128.386	72.263
Batch 3	8599.41	28088.54	14702.71	$y=0.0002^{*} x$	2.941	147.027	82.755
Batch 4	8659.19	23928.87	14377.45	$\begin{gathered} \hline y=0.0003^{*} x \\ -1.268 \end{gathered}$	3.044	152.246	85.693
Batch 5	8070.77	23826.47	16351.43	$\begin{gathered} y=0.0003^{*} x \\ -1.049 \end{gathered}$	3.854	192.821	108.531
Batch 6	8070.77	23826.47	14494.36	$\begin{gathered} y=0.0003^{*} x \\ -1.049 \end{gathered}$	3.299	164.965	92.852
Batch 7	10188.02	19865.11	12712.88	$\begin{gathered} y=0.0004^{*} x \\ -3.211 \end{gathered}$	1.874	93.698	52.738
Batch 8	10188.02	19865.11	16761.13	$\begin{gathered} y=0.0004^{*} x \\ -3.211 \end{gathered}$	3.493	174.663	98.310
						Average	77.64
						SD	26.25

[^0]
[^0]: * calculated using the fitting equation
 ** calculated using MW $\mathrm{MPA}_{\text {tPA }}=57 \mathrm{kDa}$ and $\mathrm{MW}_{\text {TMV }}=39400 \mathrm{kDa}$

