Electronic Supplementary Information (ESI)

Diffusion controlled multilayer electrocatalysts via

sized graphene oxide nanosheets

Minsu Gu,¹* Jaewon Choi,¹ Taemin Lee,¹ Minju Park,¹ Ik-Soo Shin,² Jinkee Hong,³ Hyun-Wook Lee,¹ and Byeong-Su Kim^{1,4}*

¹Department of Energy Engineering and ⁴Department of Chemistry, Ulsan National Institute

of Science and Technology (UNIST), Ulsan 44919, Korea

²Department of Chemistry, Soongsil University, Seoul 06978, Korea

³Department of Chemical Engineering and Biomolecular Engineering, Yonsei University,

Seoul 03722, Korea

E-mail: sbgms@unist.ac.kr (M.G.); bskim19@unist.ac.kr (B.-S.K.)

Figure S1. FT-IR spectra of LGO, MGO, and NGO sheets.

Figure S2. Raman spectra of LGO, MGO, and NGO sheets.

Figure S3. TEM images with a corresponding size distribution histogram of DMAP-Pd NPs suspension.

Figure S4. UV/vis absorbance spectra of (a) $(MGO/Pd)_n$ and (b) $(NGO/Pd)_n$ multilayer thin films. Inset image represents the samples prepared.

Figure S5. Elemental mapping images of carbon, palladium, and nitrogen of (a) $(LGO/Pd)_4$, (b) $(MGO/Pd)_4$, and (c) $(NGO/Pd)_4$ multilayer thin film electrodes. The scale bar in all images is 100 μ m.

Figure S6. Chronoamperogram (CA) of $(LGO/Pd)_{10}$, $(MGO/Pd)_{10}$ and $(NGO/Pd)_{10}$ multilayer thin films at 0 V (vs. Hg/HgO) in N₂ saturated 0.10 M KOH with 1.0 M CH₃OH.

Figure S7. Tafel plots of $(LGO/Pd)_n$, $(MGO/Pd)_n$, and $(NGO/Pd)_n$ multilayer thin films. Tafel slopes and the corresponding αn were calculated in the Tafel region from -0.30 to -0.15 V.

Figure S8. CV and Tafel plots of commercial 30 wt% Pd/C in N₂ saturated 0.10 M KOH with 1.0 M CH₃OH.

Table S1. Properties related to charge and mass-transfer of $(LGO/Pd)_n$, $(MGO/Pd)_n$, and $(NGO/Pd)_n$ multilayer thin films comparing to commercial Pd/C.

Multilayer		Tafel slope		Diffusion	Tortuosity	Diffusion
films	BLs	(mV/dec)	nα	coefficient	, (τ)	length
				$(D, m^2/s)$		(<i>L</i> , nm)
$(LGO/Pd)_n$	6	223	0.264	1.16×10-6	37	1995
	8	249	0.237	1.26×10-7	341	25390
	10	213	0.277	1.47×10 ⁻⁸	2917	241838
$(MGO/Pd)_n$	6	216	0.274	3.44×10 ⁻⁶	12	690
	8	227	0.260	9.66×10 ⁻⁷	44	2837
	10	268	0.220	1.28×10-7	335	24285
$(NGO/Pd)_n$	6	204	0.289	4.48×10-6	10	538
	8	233	0.254	9.09×10 ⁻⁶	5	332
	10	244	0.242	2.07×10 ⁻⁵	2	167
	12	270	0.219	2.43×10 ⁻⁵	2	160
	14	255	0.231	1.21×10 ⁻⁵	4	357
	16	232	0.255	6.40×10 ⁻⁶	7	742
Pd/C		299	0.197	4.29×10 ⁻⁵	1	