Supplementary Information

Tunability in the optical response of defective monolayer WSe₂ by computational analysis

Jie Jiang, Ruth Pachter,* Shin Mou

Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA

^{*} Corresponding author: <u>ruth.pachter@us.af.mil</u>

Formation Energies

Defect formation energies E_f were calculated at the DFT/PBE level using the expression $E_f = \left[E_{defect} + n_i \mu_i\right] - E_{pristine}$, where E_{defect} is the total energy of the WSe₂ supercell with defects; $E_{pristine}$ is the total energy of the pristine WSe₂ supercell; n_i is the number of *i* elements (W or Se) removed from pristine WSe₂ to create the defects; and μ_i is the chemical potential of element *i*. For the SV, DV, WV, T₁, T₂, T₃ defects in 2D WSe₂, $n_i \mu_i = \mu_{Se}$, $2\mu_{Se}$, μ_W , $6\mu_{Se}$, $10\mu_{Se}$, $14\mu_{Se}$, respectively. The chemical potential was calculated by $\mu_W + 2\mu_{Se} = \mu_{WSe_2}$, ¹ where μ_W , μ_{Se} , and μ_{WSe_2} are the chemical potentials for W, Se, and WSe₂, respectively. μ_{WSe_2} was calculated as the total energy per primitive cell of pristine WSe₂, μ_W^{Max} is the total energy per atom of a bcc W metal, and μ_{Se}^{Max} the total energy per atom of a grey Se crystal.

At the DFT/PBE level we obtained $\mu_{WSe_2} = -21.67 \text{ eV}, \mu_W^{Max} = -13.02 \text{ eV}, \mu_{Se}^{Max} = -3.50 \text{ eV};$ $\mu_W^{Min} = \mu_{WSe_2} - 2\mu_{Se}^{Max} = -14.68 \text{ eV}, \text{ and } \mu_{Se}^{Min} = \left(\mu_{WSe_2} - \mu_M^{Max}\right)_2 = -4.33 \text{ eV}.$ For a W rich environment, $\mu_W = \mu_W^{Max}$ and $\mu_{Se} = \mu_{Se}^{Min}$, and the defect formation energies of 1.85 eV, 3.23 eV, 5.17 eV, 6.91 eV, 11.20 eV, and 15.38 eV, for SV, DV, WV, T₁, T₂, and T₃, respectively, were calculated, while for an Se rich environment, where $\mu_{Se} = \mu_{Se}^{Max}$ and $\mu_W = \mu_W^{Min}$, defect formation energies were 2.68 eV, 4.89 eV, 3.51 eV, 11.88 eV, 19.49 eV, and 26.98 eV, for SV, DV, WV, T₁, T₂, and T₃ defects, respectively. The results for SV, DV, and WV agree with previous DFT calculations.¹

Reference

1. S. Haldar, H. Vovusha, M. K. Yadav, O. Eriksson, B. Sanyal, *Phys. Rev. B* 2015, 92, 235408.

Table S1. RPA excitation energies for monolayer WSe_2 with T_1 , T_2 , and T_3 defects: D_1 , D_2 , D_3 , and D_4 bound excitons (in eV).

	D ₁	D ₂	D ₃	D ₄
T ₁	1.28	1.00	0.64	
T ₂	1.44	0.77	0.11	
T ₃	1.26	1.12	0.83	0.10

Figure S1. PBE+SOC band structures for monolayer WSe₂ with a SV defect using (a) $2 \times 2 \times 1$, (b) $3 \times 3 \times 1$,

(c) $4 \times 4 \times 1$, and (d) $5 \times 5 \times 1$ supercells. Defect bands are numerically labelled.

(a)

Figure S2. Convergence of the absorption spectrum of monolayer WSe₂ with a SV defect with respect to *k*-point sampling. Black, red, and green are for $3 \times 3 \times 1$, $4 \times 4 \times 1$, and $5 \times 5 \times 1$ *k* samplings, respectively.

Figure S3. PBE+SOC band structures for monolayer WSe₂ with (a) SV, (b) DV, (c) WV, (d) T_1 , (e) T_2 , and (f) T_3 defects. Bound defect bands are numerically labelled.

Figure S4. Phonons in pristine 2D WSe₂: (a) phonon dispersion, and (b) phonon eigenvectors for 1^{st} order Raman active modes E' and A_1' .