Electronic Supplementary Inofrmation

Freestanding CoSeO₃·H₂O Nanoribbon/Carbon Nanotube Composite Paper for 2.4 V High-Voltage, Flexible, Solid-State Supercapacitors

Yingchang Jiang, Zeyi Wu, Le Jiang, Zhichang Pan, Peiyu Yang, Wenchao Tian, Linfeng Hu*

Department of Materials Science, Fudan University, Shanghai 200433 (P. R. China)

E-mail: linfenghu@fudan.edu.cn

Figure S1. SAED patterns taken from the same place of an individual $CoSeO_3 \cdot H_2O$ nanoribbon at initial stage (a) and (b) after a few seconds of electron beam irradiation .

Figure S2. The SEM images of the product with the (a) presence and (b) absence of 3.0 g of PVP surfactant.

Figure S3. The photographs of the as-prepared $CoSeO_3 \cdot H_2O$ paper with high flexibility.

Figure S4. The photograph depicts excellent flexible performance of the as-prepared $CoSeO_3$ ·H₂O, HWCNTs paper by a glass rod.

Figure S5. Typical XRD patterns of CoSeO₃·H₂O /HWCNTs paper and CoSeO₃·H₂O power.

Figure S6. The electronic conductivity of pure HWCNTs paper, CSO/H-1, CSO/H-2, CSO/H-3 composite papers, and $CoSeO_3 \cdot H_2O$ paper.

Figure S7. In-plane SEM images of representative $CoSeO_3$ ·H₂O/HWCNTs paper with different mass ratio at (a) 9:1 and (b) 10:1.

Figure S8. Typical strain–stress curves of pure $CoSeO_3 \cdot H_2O$ paper, $CoSeO_3 \cdot H_2O$ /HWCNTs (9:1) and $CoSeO_3 \cdot H_2O$ /HWCNTs (8:1) composite papers.

Figure S9. Electrochemical impedance spectra of the $CoSeO_3 \cdot H_2O/HWCNTs$ paper electrode at the initial state and after 5,000 cycles, respectviely.

Figure S10. (a) Typical TEM image of HWCNTs. (b, c) The photograph of the as-prepared HWCNTs film with high flexiblity.

Figure S11. (a) Characteristic CV curves of the HWCNTs@Ni foam electrode in aqueous KOH electrolyte at different scan rates. (b) Galvanostatic charge–discharge curves. (c) C_s of HWCNTs@Ni foam electrode at different current densities. The capacitance of the activated carbon is 186 F g⁻¹ for the applied current density of 1 A g⁻¹.

Figure S12. Cyclic voltametry (CV) of the $CoSeO_3 \cdot H_2O$ @ Ni foam and HWCNTs@ Ni foam in aqueous KOH electrolyte at a scan rate of 15 mV s⁻¹.

Table S1. Summary of the performance metrics of various freestanding paper-based asymmetrical supercapacitors previously reported and the present device.

Electrode materials (paper-like ASCs)	working Potential (V)	Specific capacitance (F g ⁻¹)	maximum Energy density (Wh kg ⁻¹)	maximum power density	Cyclic performance	Ref.
				(kW kg ⁻¹)	(retention)	
RGO/MnO ₂ // RGO	1.5	30.5	9.48	1.027	3600 (93%)	[1]
CoO@NiO/Activated carbon textiles // Activated carbon textiles /graphene	1.6	147.6	52.26	9.53	2000 (97.53%)	[2]
3D MnO ₂ network// Activated carbon	1.7	762	40.2	6.23	8000 (90%)	[3]
MnO ₂ /graphene // Carbon nanotubes/grphene	1.8	69.4	31.8	9.19	10000 (84.4%)	[4]
H-TiO ₂ @Ni(OH) ₂ // N-doped carbon Nanowires	1.8	150.6	70.9	20.9	5000 (90%)	[5]
NiMn-LDH/ Carbon nanotubes // RGO/ Carbon nanotubes	1.7	221	88.3	17.2	1000 (94%)	[6]
NiCo ₂ O ₄ / Carbon cloth// 3D porous graphene paper	1.8	71.32	60.9	11.36	5000 (96.8%)	[7]
RuO2-IL-CMG//						
IL-CMG(ionic liquid functionalized- chemically modified graphene)	1.8	175	19.7	6.8	2000 (79.4%)	[8]
CoSeO3·H2O/HWCNTs //HWCNTs	2.4	165.3	132.3	13.17	10000 (94.5%)	our work

Reference

- [1] W. X. Guo, X. J. Zhang, R. M. Yu, M. L. Que, Z. M. Zhang, Z. W. Wang, Q. L. Hua,
 C. F. Wang, Z. L. Wang, C. F. Pan, *Adv. Energy Mater.* 2015, 5, 1500141.
- [2] Z. Gao, N. N. Song, X. D. Li, J. Mater. Chem. A 2015, 3, 14833-14844;
- [3] N. Liu, Y. L. Su, Z. Q. Wang, Z. Wang, J. S. Xia, Y. Chen, Z. G. Zhao, Q. W. Li, F. X. Geng, ACS Nano 2017, 11, 7879-7888;
- [4] Z. Y. Zhang, F. Xiao, L. H. Qian, J. W. Xiao, S. Wang, Y. Q. Liu, Adv. Energy Mater. 2014, 4, 1400064;
- [5] Q. Q. Ke, C. Guan, X. Zhang, M. R. Zheng, Y. W. Zhang, Y. Q. Cai, H. Zhang, J. Wang, *Adv. Mater.* 2017, 29, 1604164;
- [6] J. W. Zhao, J. L. Chen, S. M. Xu, M. F. Shao, Q. Zhang, F. Wei, J. Ma, M. Wei, D. G. Evans, X. Duan, Adv. Funct. Mater. 2014, 24, 2938-2946;
- [7] Z. Gao, W. L. Yang, J. Wang, N. N. Song, X. D. Li, Nano Energy, 2015,13, 306-317;
- [8] B. G. Choi, S. J. Chang, H. W. Kang, C. P. Park, H. J. Kim, W. H. Hong, S. Lee, Y. S. Huh, *Nanoscale* 2012, 4, 4983-4988.