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Figure S1. Geometrical parameters for optimized (6,0)3 BNNT and CNT at spin 
unrestricted (U) B3LYP/6-31G* level of theory

Comparison of Molecular Geometries of BNNTs and CNTs

The optimized molecular geometries for (6,0)3 BNNT and CNT are illustrated in 

Figure S1 together with a comparison of radial and vertical bond lengths. It can be 

seen that the diameter of (6,0)3 CNT is 4.851 Å, while (6,0)3 BNNT possesses two 

dimeters, i.e., N-edge (5.096Å) and B-edge (4.831Å). The four radial B-N bonds are 

1.456Å, 1.458Å, 1.459Å and 1.454Å for R1, R2, R3 and R4, respectively, in (6,0)3 

BNNT. Similarly, the three vertical B-N bonds of BNNT are also shown to possess 

different lengths as 1.452Å, 1.449Å and 1.451Å for T1, T2 and T3, respectively. In 

contrast, such bond length alternations are not prominent for C-C bonds in (6,0)3 CNT 

as seen in Figure S1. Another important difference is found in electronic dipole 
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moments for (6,0)3 CNT and (6,0)3 BNNT. The dipole moment of (6,0)3 CNT is found 

to be zero due to its symmetric change distribution, while for dipole moment of 8 

Debye is found for (6,0)3 BNNT that is probably due to its local dipoles for individual 

B-N bonds owing to the electronegativity difference of Nitrogen and Boron atoms. 

Figure S2. Mulliken atomic charges of individual atoms in color scheme along with 
their dipole moments at spin unrestricted (U) B3LYP/6-31G* level of theory
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Figure S3. Odd electron densities corresponding to diradical characters y
i
 for 

CNT(6,0)
1
 calculated at LC-UBLYP/6-31G* level of theory. The yellow iso-surfaces 

represent densities with iso-surface of 0.001 a.u. (i = 0) and 0.0005 a.u. (i =1, 2).

Derivation of the seven-point formula for the fourth-order numerical difference in 
the finite-field method

Definitions of (hyper)polarizability tensors
The electronic polarization p under the static electric field F can be represented as 
the following power series expression:
 

. (S1)𝑝 = 𝜇 ‒ 𝜇0 = 𝛼𝐹 + 𝛽𝐹𝐹 + 𝛾𝐹𝐹𝐹 + ⋯

Here, , , and  are the polarizability, first hyperpolarizability and second 𝛼 𝛽 𝛾

hyperpolarizability, respectively.   and  are the dipole moment vectors with and 𝜇 𝜇0

without the electric field, respectively.  For the i-axis component, we have

, (S2)
𝑝𝑖 = 𝜇𝑖 ‒ 𝜇𝑖

0 = ∑
𝑗

𝛼𝑖𝑗𝐹
𝑗 + ∑

𝑗𝑘

𝛽𝑖𝑗𝑘𝐹𝑗𝐹𝑘 + ∑
𝑗𝑘𝑙

𝛾𝑖𝑗𝑘𝑙𝐹
𝑗𝐹𝑘𝐹𝑙 + ⋯

where the superscript i represents the i-axis component of the vector.  Eq. (S2) can 
be rewritten as,
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. (S3)
𝜇𝑖 = 𝜇𝑖

0 + ∑
𝑗

𝛼𝑖𝑗𝐹
𝑗 + ∑

𝑗𝑘

𝛽𝑖𝑗𝑘𝐹𝑗𝐹𝑘 + ∑
𝑗𝑘𝑙

𝛾𝑖𝑗𝑘𝑙𝐹
𝑗𝐹𝑘𝐹𝑙 + ⋯

In the presence of external static field, the total electronic Hamiltonian  within 𝐻̂(𝐹)

the electric dipole approximation is, 

, (S4)𝐻̂(𝐹) = 𝐻̂0 ‒ 𝜇̂ ∙ 𝐹

where  and  are the field-free Hamiltonian and the electronic dipole operator, 𝐻̂0 𝜇̂

respectively.  By applying the Hellmann-Feynman theorem, the differentiation of the 
expectation value of the Hamiltonian (S4) gives the following relation:

. (S5)

∂𝐸(𝐹)

∂𝐹𝑖
= ⟨Ψ(𝐹)│∂𝐻̂(𝐹)

∂𝐹𝑖 │Ψ(𝐹)⟩ = ⟨Ψ(𝐹)│ ‒ 𝜇̂𝑖│Ψ(𝐹)⟩ =‒ 𝜇𝑖

Here we assumed the following Schrödinger equation,

. (S6)𝐻̂(𝐹) �|Ψ(𝐹) �⟩ = 𝐸(𝐹)�|Ψ(𝐹) �⟩

From eqs. (S3) and (S5), we have,

𝐸(𝐹) = 𝐸(0) ‒ ∑
𝑖

𝜇𝑖
0𝐹𝑖 ‒

1
2∑

𝑗

𝛼𝑖𝑗𝐹
𝑖𝐹𝑗

. (S7)
‒

1
3∑

𝑗𝑘

𝛽𝑖𝑗𝑘𝐹𝑖𝐹𝑗𝐹𝑘 ‒
1
4∑

𝑗𝑘𝑙

𝛾𝑖𝑗𝑘𝑙𝐹
𝑖𝐹𝑗𝐹𝑘𝐹𝑙 + ⋯

The definition of (hyper)polarizabilities based on the power series of dipole moment 
is called B-convention.  Note that if we employ the Taylor series expansion for the 
dipole moment, 

, (S8)
𝜇𝑖 = 𝜇𝑖

0 + ∑
𝑗

𝛼'𝑖𝑗𝐹
𝑗 +

1
2!∑

𝑗𝑘

𝛽'𝑖𝑗𝑘𝐹𝑗𝐹𝑘 +
1
3!∑

𝑗𝑘𝑙

𝛾'𝑖𝑗𝑘𝑙𝐹
𝑗𝐹𝑘𝐹𝑙 + ⋯

we will obtain a different definition of the (hyper)polarizabilities.  This is called T-
convention, which is usually employed in several quantum chemical program 
packages such as Gaussian.  Difference between the definitions is the prefactor of 

each term, e.g., .   
𝛾𝑖𝑗𝑘𝑙 =

𝛾'
𝑖𝑗𝑘𝑙

3!

In the present study, we employed the definition of second hyperpolarizability in B-
convention.  If we consider the Taylor series expansion of  around , then,𝐸(𝐹) 𝐹 = 0

𝐸(𝐹) = 𝐸(0) + ∑
𝑖

�∂𝐸(𝐹)

∂𝐹𝑖 |𝐹 = 0𝐹𝑖 +
1
2!∑

𝑗
�∂2𝐸(𝐹)

∂𝐹𝑖∂𝐹𝑗 |𝐹 = 0𝐹𝑖𝐹𝑗

5-8



+
1
3!∑

𝑗𝑘
� ∂3𝐸(𝐹)

∂𝐹𝑖∂𝐹𝑗∂𝐹𝑘|𝐹 = 0𝐹𝑖𝐹𝑗𝐹𝑘

. (S9)
+

1
4!∑

𝑗𝑘𝑙
� ∂4𝐸(𝐹)

∂𝐹𝑖∂𝐹𝑗∂𝐹𝑘∂𝐹𝑙|𝐹 = 0𝐹𝑖𝐹𝑗𝐹𝑘𝐹𝑙 + ⋯

So, by comparing each term of eqs. (S7) and (S9), we have the following relations,

, (S10)�𝛼𝑖𝑗 =‒
∂2𝐸(𝐹)

∂𝐹𝑖∂𝐹𝑗 |𝐹 = 0

, (S11)�𝛽𝑖𝑗𝑘 =‒
1
2!

∂3𝐸(𝐹)

∂𝐹𝑖∂𝐹𝑗∂𝐹𝑘|𝐹 = 0

, (S12)�𝛾𝑖𝑗𝑘𝑙 =‒
1
3!

∂4𝐸(𝐹)

∂𝐹𝑖∂𝐹𝑗∂𝐹𝑘∂𝐹𝑙|𝐹 = 0

which can be used for the numerical difference of the total energy.  Now we 
consider the diagonal component of second hyperpolarizability,

, (S13)�𝛾𝑖𝑖𝑖𝑖 =‒
1
3!

∂4𝐸(𝐹)

(∂𝐹𝑖)4 |𝐹 = 0

which is calculated form the fourth order derivative of the total energy with respect 
to the field.  

Derivation of the seven-point numerical difference formula for the fourth-order 
derivative
For simplicity, we consider a function  which can be expressed as the Taylor 𝑓(𝑥)

series around x0, i.e., 

𝑓(𝑥) = 𝑓(0)(𝑥0) + 𝑓(1)(𝑥0)(𝑥 ‒ 𝑥0) +
1
2!

𝑓(2)(𝑥0)(𝑥 ‒ 𝑥0)2

. (S14)
+

1
3!

𝑓(3)(𝑥)(𝑥 ‒ 𝑥0)3 +
1
4!

𝑓(4)(𝑥)(𝑥 ‒ 𝑥0)4 + ⋯

Here  is the nth-order derivative of .  Assume that h is a small change of 𝑓(𝑛)(𝑥) 𝑓(𝑥)

the variable x and n is the natural number.  By substituting , eq. (S14) 𝑥 = 𝑥0 ± 𝑛ℎ

becomes

𝑓(𝑥0 ± 𝑛ℎ) = 𝑓(𝑥0) ± 𝑛𝑓(1)(𝑥0)ℎ +
𝑛2

2!
𝑓(2)(𝑥0)ℎ2

. (S15)
±

𝑛3

3!
𝑓(3)(𝑥0)ℎ3 +

𝑛4

4!
𝑓(3)(𝑥0)ℎ4 ± ⋯

So, we have the following equations,
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𝑓(𝑥0 + 𝑛ℎ) + 𝑓(𝑥0 ‒ 𝑛ℎ)

, (S16-n)
= 2{𝑓(𝑥0) +

𝑛2

2!
𝑓(2)(𝑥0)ℎ2 +

𝑛4

4!
𝑓(4)(𝑥0)ℎ4 +

𝑛6

6!
𝑓(6)(𝑥0)ℎ6 + ⋯}

and,

𝑓(𝑥0 + 𝑛ℎ) ‒ 𝑓(𝑥0 ‒ 𝑛ℎ)

. (S17-n)
= 2{𝑛𝑓(1)(𝑥0)ℎ +

𝑛3

3!
𝑓(3)(𝑥0)ℎ3 +

𝑛5

5!
𝑓(5)(𝑥0)ℎ5 + ⋯}

From eq. (S17-1), the central difference (two-point formula) for the first-order 
derivative is obtained as

. (S18)
𝑓(1)(𝑥0) =

𝑓(𝑥0 + ℎ) ‒ 𝑓(𝑥0 ‒ ℎ)
2ℎ

+ 𝑂(ℎ2)

By considering a sum of the equations, (S17-2) (S17-1), we can to eliminate + 23 ×

the main term of  to obtain the following equation, 𝑂(ℎ2)

𝑓(𝑥0 + 2ℎ) ‒ 𝑓(𝑥0 ‒ 2ℎ) ‒ 23{𝑓(𝑥0 + ℎ) ‒ 𝑓(𝑥0 ‒ ℎ)}
= 2{2𝑓(1)(𝑥0)ℎ +

23

3!
𝑓(3)(𝑥0)ℎ3 +

25

5!
𝑓(5)(𝑥0)ℎ5 + ⋯}

‒ 2 ∙ 23{𝑓(1)(𝑥0)ℎ +
1
3!

𝑓(3)(𝑥0)ℎ3 +
1
5!

𝑓(5)(𝑥0)ℎ5 + ⋯}
. (S19)

=‒ 2{6𝑓(1)(𝑥0)ℎ +
24
5!

𝑓(5)(𝑥0)ℎ5 + ⋯}
Thus, we obtain the following four-point formula

. (S20)
𝑓(1)(𝑥0) =

‒ {𝑓(𝑥0 + 2ℎ) ‒ 𝑓(𝑥0 ‒ 2ℎ)} + 8{𝑓(𝑥0 + ℎ) ‒ 𝑓(𝑥0 ‒ ℎ)}
12ℎ

+ 𝑂(ℎ4)

We can apply similar procedures for the derivation of the higher-order derivatives, 
although we also need to eliminate the lower-order derivative terms.  For the 
fourth-order derivative, we firstly consider a sum of the equations, (S16-
2) (S16-1).  To eliminate the second-order term including , we need to set a  + 𝑎 × 𝑓(2)

condition , i.e., .  Therefore, the equation becomes22 + 𝑎 = 0 𝑎 =‒ 4

,
𝑓(4)(𝑥0) =

‒ {𝑓(𝑥0 + 2ℎ) + 𝑓(𝑥0 ‒ 2ℎ)} + 4{𝑓(𝑥0 + ℎ) + 𝑓(𝑥0 ‒ ℎ)} ‒ 6𝑓(𝑥0)
ℎ4

+ 𝑂(ℎ2)

(S21)

which gives the five-point formula for the fourth-order derivative.  To eliminate the 
main term of , we need to consider the equations (S16-n) up to n = 3.  So, let us 𝑂(ℎ2)

consider a sum of the equations, (S16-3) (S16-2) (S16-1).  To eliminate + 𝑎 ×  + 𝑏 ×

the second-order term, we need to set a condition, .  To eliminate the 32 + 22𝑎 + 𝑏 = 0
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 term, which corresponds to the sixth-order term, we need to set another 𝑂(ℎ2)

condition, .  To satisfy these conditions, the factors must be 36 + 26𝑎 + 𝑏 = 0

, and then we have(𝑎,𝑏) = ( ‒ 12,39)

𝑓(4)(𝑥0) =
‒ {𝑓(𝑥0 + 3ℎ) + 𝑓(𝑥0 ‒ 3ℎ)} + 12{𝑓(𝑥0 + 2ℎ) + 𝑓(𝑥0 ‒ 2ℎ)} ‒ 39{𝑓(𝑥0 + ℎ) + 𝑓(𝑥0 ‒ ℎ)} + 56𝑓(𝑥0)

6ℎ4

+ 𝑂(ℎ4)
,

(S22)

as the seven-point formula for the fourth-order derivative.  

Finite-field method for the longitudinal second hyperpolarizability tensor
Considering the numerical accuracy, we apply the seven-point formula, eq. (S22), to 
evaluate the fourth-order derivative of the total energy in Eq. (S13).  Then, we have 

, 
𝛾𝑖𝑖𝑖𝑖 =‒

1
3!

‒ {𝐸(3𝐹𝑖) + 𝐸( ‒ 3𝐹𝑖)} + 12{𝐸(2𝐹𝑖) + 𝐸( ‒ 2𝐹𝑖)} ‒ 39{𝐸(𝐹𝑖) + 𝐸( ‒ 𝐹𝑖)} + 56𝐸(0)

6(𝐹𝑖)4

(S23)

as the working equation of the finite-field method for the calculation of longitudinal 
second hyperpolarizability tensor.  The right-hand-side of the equation is the same 
as that of eq. (2) in the main text.  Note that this formula involves an error of 

, and thus the obtained value depends on the amplitude  to be employed.   𝑂((𝐹𝑖)4) 𝐹𝑖

In principle, we can decrease the error by setting a very small finite amplitude.  In 
practical, however, the present situation is not so simple.  The numerator consists of 
the sums and differences of the total electronic energies under several electric fields.  
The total energy is also calculated numerically within a finite digit number using the 
quantum chemical program package.  To reduce the errors originating in the 
cancellation of significant digits, we also need to set very tight convergence criterion 
for the total energy (and the density matrix as well).  Since extremely tight 
convergence criteria may be difficult to achieve, we need to find balanced conditions 
for the convergence criterion and the field amplitudes.  In the present study, we set 
the convergence criterion for the total energy as 10-10 a.u., and then evaluate the 
right-hand-side of eq. (S23) using several different  values to check the numerical 𝐹𝑖

accuracy.  
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