Supporting information

Significantly Improved Black Phase Stability of FAPbI₃ Nanowires via Spatially Confined Vapor Phase Growth in Nanoporous Templates

LeiLei Gu^{†,§}, Daquan Zhang^{†,§}, Matthew Kam[†], Qianpeng Zhang[†], Swapnadeep Poddar[†], Yu Fu[†], Xiaoliang Mo[‡], Zhiyong Fan^{†,*}

[§] These authors contribute equally to this work

[†] Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.

[‡] Department of Materials Science, Fudan University, Shanghai 200433, China.

* Corresponding email: eezfan@ust.hk

Top-view SEM image of FAPbI₃ NWs/PAM sample

Figure S1. Top view of an ordered NW/PAM sample with minor overgrowth.

Light absorption of NWs/PAM samples grown at different temperature

Figure S2. UV-Vis spectrum of NWs/PAM samples grown at different temperature (180 °C-240 °C) for 4 hrs.

MAPbI₃ NWs grown with CVD for comparison

Figure S3. Cross-section view SEM images of MAPbI3 NWs grown with CVD method at temperature of 180 °C.

Thermal stability comparison of FAPbI₃ NWs/PAM sample

Figure S4. TGA analysis of FAPbI₃ NWs/PAM, MAPbI₃ NWs/PAM and FAPbI₃ film samples (a) and their corresponding 1st derivatives (b).

Stability analysis of FAPbI₃ NWs/PAM sample

Figure S5. Optical photos of FAPbI₃ NWs/PAM sample stored in ambient condition with Relative humidity ranging from 18%-40% vs time.

Morphology of FAPbI₃ film

Figure S6. SEM images of evaporated $FAPbI_3$ film on FTO substrate in top (a) and cross-section view (b).

Stability analysis of FAPbI₃ film

Figure S7. XRD evolution of FAPbI₃ film stored in ambient condition with Relative humidity range from 18%-40% vs time and the corresponding photos.

Chlorobenzene test of a-FAPbI₃ film

Figure S8. UV-vis spectrums and photos of evaporated $FAPbI_3$ film in chlorobenzene at different condition: (a) 30 min chlorobenze+sonication; (b) 1hr min chlorobenzene; (c) 2hrs chlorobenzene; (d) 15 hrs chlorobenzene.

Stability analysis of FAPbI₃ NWs/PAM in ambient with RH 97%

Figure S9. SEM image and Photo of FAPbI₃ NWs/PAM before (a) and after aging in RH 97% environment for 192 hrs (b).

	Morphology	Storage environment	α -phase stable time	Reference
FAPbI ₃	NWs in PAM	Air, RH: 18~40%	>210 days	Our
		Air, RH: 97%	>192 hrs	sample
FAPbI ₃	Polycrystalline film	Air, RH: 18~40%	3 days	Our
				control
				sample
FAPbI ₃	Polycrystalline film	Air, RH: 50%	5 min	Ref 20
FAPbI ₃	Polycrystalline film	Inert gas	10 min	Ref 38
FAPbI ₃	Polycrystalline film	Air, RH:90%	4 hrs	Ref 23
FAPbI ₃	Polycrystalline film	Air, RH:50%	< 5 days	Ref 47
FAPbI ₃	Single crystals	Inert gas	24 hrs	Ref 38
FAPbI ₃	Single crystals	Inert gas	10 days	Ref 39
FAPbI ₃	Single crystals	Air, RH: 40-50%	7 days	Ref S1
		Air, RH: 15-20%	>23 days	
FAPbI ₃	surface modified NWs	ambient	>4 months	Ref 25
FA _{0.85} Cs _{0.15} PbI ₃	Polycrystalline film	Air, RH:15%	30 days	Ref 23
FAPb _{0.95} Bi _{0.05} I ₃	Polycrystalline film	Air, RH: 50%	>15 days	Ref S2

Comparison of phase stability of our FAPbI3 NWs/PAM sample with others

Table 1. Comparison of $\,\alpha$ -phase stable time of our FAPbI3 NWs/PAM sample with reported values.

Reference

S1. Liu, Y.; Sun, J.; Yang, Z.; Yang, D.; Ren, X.; Xu, H.; Liu, S. F. Adv. Opt. Mater. 2016, 4, (11), 1829-

1837.

S2. Hu, Y.; Qiu, T.; Bai, F.; Miao, X.; Zhang, S. J. Mater. Chem. A 2017, 5, (48), 25258-25265.

Phase stability of large-diameter alpha-FAPbI₃ NWs in AAM

Figure S10. XRD of large-diameter FAPbI₃ NWs (~450 nm) in freestanding PAM stored at wet condition (temperature: 23 °C, Relative humidity: 97%) vs time.

Optical properties stability of FAPbI₃ NWs/PAM sample

Figure S11. PL (a) and UV-vis (b) curves of FAPbI₃ NWs/PAM sample before and after storing in ambient condition with relative humidity range from 18%-40% for 210 days.