Supporting Information

808nm light-excited upconversion nanoprobe based on LRET for the

ratiometric detection of nitric oxide in living cancer cells

Han Wang, Yi Liu, Zhaohui Wang, Man Yang, and Yueqing Gu*

State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China

* E-mail: guengineering@cpu.edu.cn

TABLE OF CONTENTS

Figure S12
Figure S22
Figure S32
Figure S4
Figure S54
Figure S64
Figure S75
Figure S85
Figure S95
Figure S106
Figure S116
Figure S126
Figure S137
Figure S147
Figure S15
Figure S16
Figure S179
Figure S189
Figure S1910
Figure S2010

Figure S1 The synthetic procedure of RhBs.

Figure S3 The reaction mechanism of RhBs probing for NO.

Figure S4 Absorption of RhBs (black line), PAAO-UCNPs (red line) and PAAO-UCNPs-RhBs (blue line)

Figure S5 The FTIR spectrum of UCNPs PAAO-UCNPs, PAAO-UCNPs-RhBs and RhBs.

Figure S6 Absorption spectra of RhBs with different concentration of 100µM,200µM, 300µM, 400µM, 500µM

Figure S7 The absorbance of RhBs at 253nm with different concentration of 100µM,200µM, 300µM, 400µM, 500µM

Figure S8 The schematic diagram for the preparation of NO solution.

Figure S9 Absorption spectra of Griess Reagent with different concentration of 0.05μ M, 0.1μ M, 0.25μ M, 0.5μ M, 1μ M

Figure S10 The absorbance of Griess Reagent at 540nm with different concentration of 0.05μ M, 0.1μ M, 0.25μ M, 0.5μ M, 1μ M

Figure S11 Cell viability of HepG2 cells after adding SNP at different concentrations with 24h incubation

Figure S12 The distribution of PAAO-UCNPs in HepG2 cells

Figure S13 The ratio of UCL_{540nm} and UCL_{660nm} in different cell lines (LO2, U87, HepG2, HeLa) by quantifying the intensity of UCL_{540nm} and UCL_{660nm} in different cell lines, respectively.

Figure S14 The ratio of UCL_{540nm} and UCL_{660nm} in HepG2 cells by quantifying the intensity of UCL_{540nm} and UCL_{660nm} .

Figure S15 (A) The UCL images in 0,100,500µM SNP-pretreated U87 cells with the addition of nanoprobe (200µg mL⁻¹) for 24h incubation.

Figure S16 The ratio of UCL_{540nm} and UCL_{660nm} in U87 cells by quantifying the intensity of UCL_{540nm} and UCL_{660nm}.

Figure S17 The UCL images in $0,100,500\mu$ M SNP-pretreated HeLa cells with the addition of nanoprobe (200 μ g mL⁻¹) for 24h incubation.

Figure S18 The ratio of UCL_{540nm} and UCL_{660nm} in HeLa cells by quantifying the intensity of UCL_{540nm} and UCL_{660nm}.

Figure S19 The ratio of UCL_{540nm} and UCL_{660nm} in HepG2 cells by quantifying the intensity of UCL_{540nm} and UCL_{660nm} at different time, respectively.

Figure S20 The concentration changes of NO solution at different time