Supporting Information

Versatile Porous Graphene Flakes Derived by Alkali Metal Carbonates based Ultrafast and Sulfuric Acid-Free Solid-State Oxidation Reaction

Yeoheung Yoon, Minhe Lee, Seong Ku Kim, Wooseok Song, Myung Sung, Jongsun Lim, Taehyoung Zyung, Sun Sook Lee^{*}, Ki-Seok An^{*}

Figure S1. (a) Digital images of reaction time-dependent products. (b) Dispersibility of assynthesized MSGO in water before and after washing with water and 1 wt.% HCl.

Figure S2. Thermal stability of graphite depends on heating rate

Figure S3. SEM images of H-GO (left) and MSGO (right).

Figure S4. Alkali metal-dependent oxidation degree, indicating there is no oxidation behavior in K_2CO_3 .

Figure S5. Ratio of M₂CO₃-dependent oxidation degree of MSGO, C 1s core level spectra. (a) Li₂CO₃, (b) Na₂CO₃, (c) K₂CO₃, and (d) Ratio of Na₂CO₃-dependent Raman spectroscopy.

Figure S6. High-resolution TEM images. (a) MSGO showing no impurities on the surface after HCl treatment. (b) Li_2O particles can be observed on MSGO sheet before HCl treatment.

Figure S7. Pore size distribution of all samples.

Figure S8. Chemical structures of thermal reduction of MSGO to MSrGO

Figure S9. Cyclic voltammetry curves of all electrodes at scan rates from 10 to 100 mV s⁻¹. (a) Li₂CO₃, (b) Na₂CO₃, (c) K₂CO₃, and (d) H-GO.