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Materials 

YCl3·6H2O (99.99%), YbCl3·6H2O (99.998%), TmCl3·6H2O (99.99%), GdCl3·6H2O 
(99.99%), LuCl3·6H2O (99.99%), NH4F (>98%), NaOH (>97%), oleic acid (OA, 90%), 
and 1-octadecene (ODE, 90%) were purchased from Sigma-Aldrich and used as received 
without further purification.

Analytical interpretation of the concentration quenching for core-shell UCNPs

Although the surface of the UCNPs is well shielded from outside, sensitizer can still 
cause concentration quenching due to the deleterious effects of Yb3+. Here we used the 
mathematical modelling to simulate the processes (Fig. S1). 

W2~W5 represents the radiative relaxation rate for different energy levels. K51, K41, K31, 
denotes the cross-relaxation between different energy level. n1~n5 are the energy level 
population for the UC system. C1~C4 are energy transfer rate between Yb3+ and Tm3+ for 
stepwise UC processes. P980 is the pumping rate of Yb3+ ions under 980 nm excitation 
laser with a fixed power. τs denotes the intrinsic decay rate for Yb3+ions at excited state.
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When system reaches a steady state, all the above temporal differentiations equals to zero.
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Substitute equation (S2) to (S5) repetitively into (S1), we obtain
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The term  can be viewed as the integration of total emission spectrum. To 
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make it clearer, we use E to substitute the term. 
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In addition,  denotes the Yb3+ that relaxed from the excited state to the ground state in 
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Yb-Tm UC system. Since the energy level is well matched (2F2/5-3H5), the energy is 

mostly transferred to Tm3+ ions[1]. Therefore, we can ignore  since it is negligible 
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compared to the other term, and the equation can be re-written as 
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together can be viewed as the total photons absorbed by Yb3+. Based on the 1980 SnP

photon absorption theory,  in which N is the total number of photons at   3YbNC
dx
dN

depth x, κ is constant, CYb3+ is the concentration of Yb3+, σ is the absorption cross-section. 

After integration, we can obtain , where N0 is the total number of )1( 3
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photons that reach on the UCNPs, α is a positive constant. 

Q is the total energy distributed to the quencher. For non-radiative energy transfer, the 

transfer rate is proportional to the sixth power of distance[2], namely, . Assuming 6
1
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all elements ions in crystal are perfectly evenly distributed, the average distance ( ) for d
the defects to the closest Yb3+ can be obtained as:

, and thus,
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In which, a, b is the lattice constant, thus the quenching factor Q can be related to CYb3+ 

as 
 , or  23 YbCQ  23 YbCQ 

Together, the equation can be changed into
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Moreover, this model can be applied to other lanthanide-doped UC system, as long as the 
surface quenching is effectively prohibited. 
Based on our model Eq. S14, we can get the first and second derivative of the E to 
concentration 3YbC
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Thus, we can obtain:
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Based on these three equations, we can conclude that the shape of the - curve is E 3YbC

like a convex, with the maximum happened at the . Thus, the increasing and 0' E
decreasing trend of the luminescence intensity for core-shell samples can be well 
illustrated by using the photon-absorption and inner quenching center mechanism. 

For core only UCNPs, the quenching term ,should be revised as , or Q  3YbCQ

, since the energy mainly goes to the surface of the UCNPs. However, due to  3
'

YbCQ 

the difference of the power parameters between the core and core shell UCNPs, when
, different  are to be expected, thereby indicating a difference in the optimized 0' E 3YbC

composition for core and core-shell UCNPs. 

The above analysis showed that, for Yb3+ sensitized co-doped core shell UCNPs, Yb3+ 

concentration cannot exceed the optimized point, otherwise, concentration quenching will 
happen inevitably. In the view of this, we hypothesized that moving the extra Yb3+ to 
another layer would lead to increased photon adsorption along with reducing the heavy 
quenching.  In this case, we can introduce another term into the mathematics model: 
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where,  represents the photons injected from outside (sensitizing layer). Since varying P
the does not affect the first two terms right side, we can simply enhance luminescence P
by merely increasing , i.e., adding more Yb3+ ions to the sensitizing layer. P



Figure S1. Simplified diagram of the Yb–Tm UC system and quenching mechanism.



Core Core-shellx
Diameter(nm) σ Diameter(nm) σ

20 22.72561 0.09412 29.98596 0.39393
30 23.21853 0.15663 30.06949 0.22974
45 22.83888 0.17044 29.93202 0.3439
60 23.15584 0.12458 30.17991 0.19885
70 22.77986 0.09179 30.27101 0.19726

Figure S2. Size histograms of a-e) NaYF4: x%Yb, [(x-20)/2] %Gd, 1%Tm UCNPs with 
x=20, 30, 45, 60, 70 and f-j) NaYF4: x%Yb, [(x-20)/2] %Gd, 1%Tm@NaLuF4 UCNPs 
with x=20, 30, 45, 60, 70. Summary of size histograms analysis are in the table.



Figure S3. Temporal resolved decay curve showing the increasing and decay profile of 

NaYF4: x%Yb, [(x-20)/2] %Gd, 1%Tm UCNPs: x=20, 30, 45, 60, 70 at peaks located at 

804nm.
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Figure S4. DLS measurements data showing the size increment between NaYF4: 20%Yb, 

1%Tm UCNPs and NaYF4: 20%Yb, 1%Tm@NaLuF4 UCNPs after NaLuF4 shell coating.

dcore=18.7±3.145nm

dcore-shell=22.7±4.949nm



Figure S5. EDS characterization (a) NaYF4: 20Yb, 1Tm UCNPs and (b) NaYF4: 20Yb, 

1Tm@NaLuF4 with peaks from lutetium highlighted in red color.



Figure S6. Temporal resolved decay curve showing the increasing and decay profile of 

NaYF4: x%Yb, [(x-20)/2] %Gd, 1%Tm@NaLuF4 UCNPs: x=20, 30, 45, 60, 70 at peaks 

located at 804nm.
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Figure S7. Temporal resolved decay curve with duel-exponential fitted curve of ACD 

and ACD+ at peaks located at 804nm
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Figure S8. a-c) TEM images of A, AC++ and ACD++. D) UC emission spectra of 

cyclohexane solutions at room temperature (25 ⁰C) comprising ACD, ACD+ and ACD++.
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