Supporting Information:

Probing Excitons in Transition Metal Dichalcogenides by

Drude-Like Exciton Intraband Absorption

Siqi Zhao,^a Dawei He,^a Jaiqi He,^a Xinwu Zhang,^a Lixin Yi,^a Yongsheng Wang,^{a*} and Hui Zhao,^{b*}

^aKey Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China

^bDepartment of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, United States

Supplementary Figures

Figure S1: (a) Optical microscope image (reflection geometry) of the monolayer WS_2 sample on PDMS substrate. The area enclosed by the dashed line is identified as monolayer. (b) Contrast of the Green channel contrast along the white line in (a). The contrast of monolayer WS_2 on a thick and transparent substrate is about 8%.

Figure S2: Photoluminescence spectrum of the WS2 monolayer region under the excitation of a 405-nm continuous-wave diode laser.

Figure S3: Microscope image of the bulk WS₂ sample (yellowish part) used for the experiment (transmission geometry).

Figure S4: Experiment setup of the differential transmission measurements based on exciton intraband absorption.