Supporting Information

Chitosan-Templated Pt Nanocatalyst Loaded Mesoporous SnO₂ Nanofibers: Superior Chemiresistor toward Acetone Molecules

Yong Jin Jeong, Won-Tae Koo, Ji-Soo Jang, Dong-Ha Kim, Hee-Jin Cho, and Il-Doo Kim*

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea

*Corresponding author e-mail: idkim@kaist.ac.kr

Table of Contents

- Figure. S1 TEM image and size distribution of polyol-Pt
- Figure. S2 SEM images of control samples
- Figure. S3 EDS elemental mapping images of polyol-Pt@SnO2 NFs
- Figure. S4 XRD analysis of samples
- Figure. S5 Thermal gravimetric and differential scanning calorimetry analysis
- Figure. S6 EDS analysis of CS residues and CS-Pt@SnO2 NFs
- Figure. S7 Optimization of amount of catalysts and operating temperature
- Figure. S8 Response and resistance variation of the new and the 6-month old sensors
- Figure. S9 Response and resistance variation at 90, 55, and 25% RH
- Figure. S10 XRD analysis of CS@SnO2 NFs in the range of 0-1.44 wt% of CS loading
- Figure. S11 SEM images of CS@SnO₂ NFs in the range of 0–1.44 wt% of CS loading
- Figure. S12 Exhaled breath sampling
- Table. S1 Acetone sensing properties of SMO based sensors

Figure. S1 a) HRTEM image and b) size distribution of polyol-Pt NPs.

Figure. S2 SEM images: a) as-spun Sn precursor/PVP NFs, b) dense SnO₂ NFs, c) as-spun Sn precursor/PVP/CS NFs, d) CS@SnO₂ NFs, e) as-spun Sn precursor/PVP/polyol-Pt, and f) polyol-Pt@SnO₂ NFs.

Figure. S3 EDS elemental mapping images for Sn, O, and Pt in polyol-Pt@SnO₂ NFs.

Figure. S4 XRD analysis of dense SnO₂ NFs, CS@SnO₂ NFs, polyol-Pt@SnO₂ NFs, and CS-Pt@SnO₂ NFs.

Figure. S5 Thermal gravimetric and differential scanning calorimetry analysis: a) as-spun Sn precursor/PVP and Sn precursor/PVP/CS NFs, and b) pristine CS.

Figure. S6 EDS analysis of a) CS residues and b) CS-Pt@SnO₂ NFs. c) EDS elemental mapping images for Fe, Mg, Si, Na, and Ca contained in CS-Pt@SnO₂ NFs.

Figure. S7 a) Dynamic acetone sensing performance of CS-Pt@SnO₂ NFs for Pt amounts in the range of 0.035–0.140 wt% at 350 °C, and b) response of CS-Pt@SnO₂ NFs, polyol-Pt@SnO₂ NFs, CS@SnO₂ NFs, and dense SnO₂ NFs toward 5 ppm of acetone at different temperatures (250–450 °C).

Figure. S8 a) Response and b) resistance variation of CS-Pt@SnO₂ NFs toward 1 ppm of acetone at 350 °C and 90% RH using the new and the 6-month old sensors.

Figure. S9 a) Response and b) resistance variation of CS-Pt@SnO₂ NFs toward 1 ppm of acetone at 90, 55, and 25% RH.

Figure. S10 XRD analysis of CS@SnO₂ NFs containing 0–1.44 wt% of CS.

Figure. S11 SEM images of a) pristine SnO_2 NFs, b) 0.36 wt% CS loaded SnO_2 NFs, c) 0.72 wt% CS loaded SnO_2 NFs, and d) 1.44 wt% CS loaded SnO_2 NFs.

Figure. S12 a) Exhaled breath sampling in a tedlar bag, and b) exhaled breath sample and a diaphragm pump.

Gas species	Motoriala	Optimal	Relative	Desmanse	Response	Daf
	wrateriais	temperature	humidity	Kesponse	definition	Kel.
Acetone	La-Fe ₂ O ₂ NTs	240 °C	95% RH	6 at	Rair/Rass	1
				50 ppm	anvgas	
	Au modified In-O-	340 °C	80% RH	42.4 at	R . / R	2
	Au mounted m ₂ O ₃			5 ppm	R _{air} /R _{gas}	2
	Si danad WO	400 °C	90% RH	1.5 at	D/D 1	3
	SI-doped WO ₃			0.6 ppm	$K_{air}/K_{gas} - 1$	
	Pt-AF_WO ₃ NFs	350 °C	90% RH	153 at	D /D	4
				5 ppm	R_{air}/R_{gas}	
	Rh ₂ O ₃ –WO ₃ NFs	350 °C	95% RH	11.2 at	D /D	5
				1 ppm	R_{air}/R_{gas}	
		400 °C	95% RH	194.15 at	D /D	6
	PtO_2 -SnO ₂ MCNFs			5 ppm	R_{air}/R_{gas}	
	Pt-PS_SnO ₂ NTs	350 °C	90% RH	34.8 at	D (D	7
				1 ppm	R _{air} /R _{gas}	
		350 °C	90% RH	104 at	D (D	8
	PtRh-WO ₃ NFs			1 ppm	Rair/Rgas	
		350 °C	90% RH	141.92 at		this work
	$CS-Pt(a)SnO_2 NFs$			5 ppm	R _{air} /R _{gas}	

Table. S	1 Recentl	v report	ed gas so	ensors for	detecting	acetone in	highly	v humid	ambient.
		J	0		0		0 1		

References

- H. Shan, C. Liu, L. Liu, S. Li, L. Wang, X. Zhang, X. Bo and X. Chi, Sens. Actuators, B, 2013, 184, 243-247.
- 2 R. Xing, Q. Li, L. Xia, J. Song, L. Xu, J. Zhang, Y. Xie and H. Song, *Nanoscale*, 2015, 7, 13051-13060.
- 3 M. Righettoni, A. Tricoli and S. E. Pratsinis, Anal. Chem., 2010, 82, 3581-3587.
- 4 S. J. Kim, S. J. Choi, J. S. Jang, N. H. Kim, M. Hakim, H. L. Tuller and I. D. Kim, *ACS nano*, 2016, **10**, 5891-5899.
- 5 N. H. Kim, S. J. Choi, S. J. Kim, H. J. Cho, J. S. Jang, W. T. Koo, M. Kim and I. D. Kim, *Sens. Actuators, B*, 2016, **224**, 185-192.
- 6 Y. J. Jeong, W. T. Koo, J. S. Jang, D. H. Kim, M. H. Kim and I. D. Kim, ACS Appl. Mater. Interfaces, 2018, 10, 2016–2025
- 7 J. S. Jang, S. J. Choi, S. J. Kim, M. Hakim and I. D. Kim, Adv. Funct. Mater., 2016, 26, 4740-4748.
- 8 S. J. Kim, S. J. Choi, J. S. Jang, H. J. Cho, W. T. Koo, H. L. Tuller and I. D. Kim, Adv. Mater., 2017, 29, 1700737