Electronic Supplementary Material (ESI) for Nanoscale.

This journal is © The Royal Society of Chemistry 2018

Supplementary Information

A novel α -enolase-targeted drug delivery system for highefficacy prostate cancer therapy¹

Luyao Wang, Mengke Qu, Shiqi Huang, Yu Fu, Liuqing Yang, Shanshan He, Lin Li, Zhirong Zhang, Qing Lin^{*}, Ling Zhang^{*}

Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, P. R. China

*Corresponding author. Tel: 86-28-85501566. Fax: 86-28-85501615. E-mail address: qinglin@scu.edu.cn; femcivrogner@gmail.com

1. Immunofluorescence analysis

The dissected tumours were first fixed within 4% paraformaldehyde over 48h, and then using 15% and 30% sucrose solution to dehydrate overnight, respectively. The frozen sections of tumours were cut into 8-µm-thick, adhered on coated slides, then fixed with 4% paraformaldehyde for 15 min and permeabilized with 0.5% trixon-100 for 30 min at room temperature. After washing with PBS, the sections were immersed into 2% bovine serum albumin for 1 h to block nonspecific antibody binding. Next, stained with primary anti- α -enolase antibody (dilution ratio 1:50) at 4°C overnight. The sections were further stained with corresponding Alexa Fluor[®]647 conjugated secondary antibody (dilution ratio 1:200) at room temperature for 1 h. Finally, the slides were immersed in Hoechst 33258 for 10 min to stain the nuclei. The section images were taken using a confocal microscope (Nikon N-SIM, Japan).

Table S1. Median survival time of PC-3 bearing mice treated with saline and various doxorubicin formulations (n = 10)

Group	Median (day)	Standard derivation	Increased survival time
Saline	40.0	2.9	-
Dox	40.5	4.3	1.25%
PEG-lipo-Dox	46.0 ^a	7.5	15.0%
pHCT74-lipo-Dox	52.5 ^{a,b,c}	7.4	31.3%

^a Compared to saline group, p < 0.05.

^b Compared to Dox group, p < 0.05.

^c Compared to PEG-lipo-Dox group, p < 0.05.

Figures

Fig. S1 The MALDI-TOF mass spectrum (A) DSPE-PEG₂₀₀₀-NHS. (B) DSPE-PEG₂₀₀₀-

pHCT74.

Fig. S2 Preparation and characterization of liposomes (A) Preparation schematic of pHCT74-Lipo-Dox. **(B)** Size and **(C)** Zeta potential distribution of PEG-lipo-Dox. **(D)** Size and **(E)** Zeta potential distribution of PEG-lipo-DiD. **(F)** Size and **(G)** Zeta potential distribution of pHCT74lipo-DiD.

Fig. S3 Cellular uptake of pHCT74-Lipo-Dox (A) RWPE-1 cellular uptake of doxorubicin measured by flow cytometer (mean \pm SD, n = 3). (B) Confocal images of RWPE-1 cellular uptake of liposomes. Bar indicates 30 μ m.

Fig. S4 The comparative uptake on RWPE-1 cells. The competitive inhibition of free peptide on doxorubicin uptake by preincubation with 1 mg/mL of free pHCT74 peptide for 1 h before RWPE-1 cells were exposed to the corresponding liposomes.