Electronic Supplementary Information (ESI)

Organophosphoric Acid-Derived CoP Quantum Dots@S, N-Codoped Graphite Carbon as Trifunctional Catalysts for Overall Water Splitting and Zn-air Batteries

Tao Meng[†], Yi-Ning Hao[†], Lirong Zheng^{*,‡} and Minhua Cao^{*,†}

[†]Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China. E-mail: <u>caomh@bit.edu.cn</u>.

[‡]Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.

*E-mail: caomh@bit.edu.cn

1. Supplementary Figures

Fig. S1 (a) Illustration of the freeze-drying process and the cross-linking effect. (b) FT-IR spectra and (c) TGA curves for CoP@SNC precursor, HEDP, and thiourea. (d) Photograps of thiourea annealed before and after 500 °C.

Fig. S2 (a) XRD patterns of CoP@NC and CoP@C. (b) Raman spectrum of CoP@NC. FE-SEM

images of CoP@NC (c) and CoP@C (d). XPS spectra of N1s (e). (f) N_2 adsorption-desorption curves of CoP@NC and CoP@C. (g) BET data for CoP@SNC, CoP@NC and CoP@C.

Fig. S3 OER LSVs in 1.0 M KOH for CoP@SNC with different mass loadings (a) and CoP@SNC catalysts prepared at different temperatures (b).

Fig. S4 TEM image (a), HRTEM image (b), and corresponding SEAD pattern of CoP@SNC after 10 h OER test at the potential of 1.58 V *vs.* RHE in 1.0 M KOH.

Fig. S5 Chronopotentiometric curve of CoP@SNC tested at the current density of 10.0 mA cm⁻²

Fig. S6 High-resolution XPS spectra of Co 2p for CoP@SNC before and after OER test.

Fig. S7 EISs of CoP@SNC and CoP&SNC tested at 1.58 V vs. RHE.

Fig. S8 (a) XRD pattern of CoP@SNC-1.6. (b) OER LSVs of CoP@SNC-X (X = 0.4, 0.8, 1.2, 1.6

mmol, stands for different molar amounts of Co salt).

Fig. S9 CVs for (a) CoP@NC and (b) CoP@C tested at the potential range from 1.22 to 1.27 V *vs.* RHE under the scan rates from 10 to 50 mV s⁻¹.

Fig. S10 HER LSVs tested before and after 15 h chronoamperometric response for CoP@SNC.

Fig. S11 EISs of CoP@SNC and CoP tested at -0.35 V vs. RHE.

Fig. S12 CV curves of CoP@NC (a), CoP@C (b), CoP (c), and SNC (d) in 0.1 M KOH with a scan rate of 10 mV s⁻¹.

Fig. S13 LSV curves of CoP@NC (a), CoP@C (b), CoP (c), SNC (d), and Pt/C (e) in O_2 -saturated 0.1 M KOH with a scan rate of 10 mV s⁻¹.

Fig. S14 (a) K–L plots obtained from the RDE data at 0.35 V *vs.* RHE for CoP@SNC and Pt/C. (c) Summary of the kinetic current (J_K) and the electron-transfer number (n) on the basis of RDE data at 0.35 V for CoP@SNC and Pt/C.

Fig. S15 (a) A schematic of the rechargeable Zn-air battery; (b) A representative photograph image of the home-made type Zn-air battery.

2. Supplementary Tables

Catalysts	Mass loading (mg cm ⁻²)	Overpotential @ 10.0 mA cm ⁻² (mV vs. RHE)	Tafel slope (mV dec ⁻¹)	Substrate	Ref.
CoP@SNC	0.6	174	82	Glassy carbon	This work
CoP/CC	0.92	209	129	Carbon cloth	1
CoP/Ti	N.A.	108	52	Ti mesh	2
np-CoP /Ti	N.A.	150 a	71	Ti plate	3
CoP/MNA	6.2	54	51	Ni foam	4
FeP NAs/CC	1.5	218	146	Carbon cloth	5
CoO _x @CN	0.12	232	N.A.	Glassy carbon	6
MoP	0.86	~150	48	Glassy carbon	7
Co- NRCNTs	0.28	370	N.A.	Glassy carbon	8
MoC _x	0.8	151	59	Glassy carbon	9
MoB microparticles	N.A.	>210	59	Glassy carbon	10
MoS NAs	N.A.	190	100	Ti plate	11

Table S1 Comparison of the HER activity for our catalyst (CoP@SNC) with several recently reported highly active transition-/noble-metal and non-metal catalysts supported on different substrates in 1.0 M KOH.

Note: a at current density of 20 mA cm⁻².

Catalysta	Loading	ORR peak	Onset	Half-wave	Pof	
Catalysis	(mg cm ⁻²)	(V vs. RHE)	(V vs. RHE)	(V vs. RHE)	KCI.	
CoP@SNC	0.6	0.81	0.87	0.79	This work	
CoP NCs	0.286	N.A.	0.8	0.7	12	
Co _x P-CNTs	N.A.	-0.24 a	N.A.	-0.2 a	13	
Co ₂ P NRs	0.142	N.A.	N.A.	-0.196 ^a	14	
Co ₂ P@CoNPG- 800	2.0	0.78	0.87	0.8	15	
Fe/Co-NpGr	0.71	0.80	0.93	N.A.	16	
CoO/C	N.A.	N.A.	0.83	0.77	17	
Co@Co ₃ O ₄ @C- CM	0.1	0.79	0.93	0.81	18	
Co/N-HCOs	0.287	0.79	0.92	0.81	19	
N,S,O-doped nanoporous carbons	0.203	0.753	~0.96	0.74	20	
ZIF derived N- doped carbons	0.2	0.769	0.915	N.A.	21	

Table S2. Comparison of the ORR activity for our catalyst (CoP@SNC) with previously reported materials in 0.1 M KOH.

Note: a, V vs. Ag/AgCl

Table S3 Comparison of the rechargeable Zn-air batteries based on CoP@SNC with several key parameters with several recently reported highly active transition-/noble-metal and non-metal catalysts.

Air catalyst used	Cycling conditions and stability	Voltage polarization V (@ j, mA cm ⁻²)	Ref.
CoP@SNC	10 mA cm ⁻² , 600 s per cycle periods for 180 cycles: polarization increased ~0.06 V at the end	0.83 (10)	This work
MnO ₂ nanotube and carbon nanotube composite	\sim 8 mA cm ⁻² , 600 s per cycle periods for 50 cycles: polarization increased \sim 0.4 V at the end	1.5 (20)	22
Co ₃ O ₄ nanoparticles decorated carbon nanofibers	2 and 20 mA cm ⁻² , 1 h per cycle periods for 160 and 55 cycles: polarization increased 0.09 V at the end for 20 mA cm ⁻²	0.7 (2) 0.85 (20)	23
Tri-electrode: CoO/N–CNT + NiFe LDH	20-50 mA cm ⁻² , 4-20 h per cycle period for >200 h: negligible voltage change at the end	0.7 (20)	24
Co ₃ O ₄ NP modified MnO ₂ nanotubes	15 mA cm ⁻² ; 14 min per cycle period for 60 cycles; voltage gap increased ~0.3-0.4 V at the end	~0.85 (15)	25
ZnCo ₂ O ₄ /N–CNT	10-100 mA cm ⁻² , 20 min per cycle for 17 cycles (340 min); negligible voltage change at the end	0.84(10-100)	26
TCCN	20 mA cm ⁻² , 10 min per cycle for 15 cycles; negligible voltage change at the end	1.68 (20)	27

3. Supplementary video

Video S. CoP@SNC coated on nickel foam was used as the working electrode for overall water splitting powered by two series-connected home-made Zn-air batteries based on CoP@SNC as the air cathode. This video instinctively reflects that these two series-connected home-made Zn-air batteries can afford a large cell voltage to power water splitting device. And, CoP@SNC can also work as an efficient electro-catalyst for generating O_2 and H_2 gases, indicating its excellent overall water splitting performance. Both of these reveal that CoP@SNC can work as multi-functional catalysts for energy storage and conversion.

4. Supplementary references

- 1. J. Tian, Q. Liu, A. M. Asiri, X. Sun, J. Am. Chem. Soc. 2014, 136, 7587-7590.
- T. Liu, X. Ma, D. Liu, S. Hao, G. Du, Y. Ma, A. M. Asiri, X. Sun and L. Chen, ACS Catal. 2016, 7, 98-102.
- 3. S. Gu, H. Du, A. M. Asiri, X. Sun and C. M. Li, PCCP 2014, 16, 16909-16913.
- 4. Y. P. Zhu, Y. P. Liu, T. Z. Ren and Z. Y. Yuan, Adv. Funct. Mater. 2015, 25, 7337-7347.
- 5. Y. Liang, Q. Liu, A. M. Asiri, X. Sun and Y. Luo, ACS Catal. 2014, 4, 4065-4069.
- 6. H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang and Y. Wang, J. Am. Chem. Soc 2015, 137, 2688-2694.
- 7. P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J. Y. Wang, K. H. Lim and X. Wang, *Energy Environ*. Sci. 2014, 7, 2624-2629.
- X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmeková, T. Asefa, *Angew. Chem. Int.* Ed. 2014, 126, 4461-4465.
- 9. H. B. Wu, B. Y. Xia, L. Yu, X. Y. Yu and X. W. Lou, Nat. Commun. 2015, 6, 6512-6520.
- 10. H. Vrubel and X. Hu, Angew. Chem. Int. Ed. 2012, 124, 12875-12878.
- 11. J. Shi and J. Hu, Electrochim. Acta 2015, 168, 256-260.
- 12. H. Yang, Y. Zhang, F. Hu, Q. Wang, Nano Lett. 2015, 15, 7616-7620.
- 13. K. Chen, X. Huang, C. Wan and H. Liu, Chem. Commun. 2015, 51, 7891-7894.
- V. V. Doan-Nguyen, S. Zhang, E. B. Trigg, R. Agarwal, J. Li, D. Su, K. I. Winey, C. B. Murray, ACS Nano 2015, 9, 8108-8115.
- 15. H. Jiang, C. Li, H. Shen, Y. Liu, W. Li and J. Li, *Electrochim. Acta* 2017, 231, 344-353.
- T. Palaniselvam, V. Kashyap, S. N. Bhange, J. B. Baek and S. Kurungot, *Adv. Funct. Mater.* 2016, 26, 2150-2162.
- 17. J. Liu, L. Jiang, B. Zhang, J. Jin, D. S. Su, S. Wang and G. Sun, ACS Catal. 2014, 4, 2998-3001.
- 18. W. Xia, R. Zou, L. An, D. Xia and S. Guo, Energy Environ. Sci. 2015, 8, 568-576.
- 19. S. Chao, Z. Bai, Q. Cui, H. Yan, K. Wang and L. Yang, Carbon 2015, 82, 77-86.
- Y. Meng, D. Voiry, A. Goswami, X. Zou, X. Huang, M. Chhowalla, Z. Liu and T. Asefa, J. Am. Chem. Soc. 2014, 136, 13554-13557.
- 21. H. X. Zhong, J. Wang, Y. W. Zhang, W. L. Xu, W. Xing, D. Xu, Y. F. Zhang and X. B. Zhang, Angew. Chem. Int. Ed. 2014, 53, 14235-14239.
- 22. Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li and Z. Chen, *Electrochim. Acta* 2012, 69, 295-300.
- B. Li, X. Ge, F. T. Goh, T. A. Hor, D. Geng, G. Du, Z. Liu, J. Zhang, X. Liu, Y. Zong, *Nanoscale* 2015, 7, 1830-1838.
- 24. Y. Li, M. Gong, Y. Liang, J. Feng, J. E. Kim, H. Wang, G. Hong, B. Zhang and H. Dai, *Nat. Commun.* 2013, **4**, 1805.
- 25. G. Du, X. Liu, Y. Zong, T. A. Hor, A. Yu and Z. Liu, Nanoscale 2013, 5, 4657-4661.
- 26. Z. Q. Liu, H. Cheng, N. Li, T. Y. Ma and Y. Z. Su, Adv. Mater. 2016, 28, 3777-3784.
- 27. T. Y. Ma, J. L. Cao, M. Jaroniec and S. Z. Qiao, Angew. Chem. Int. Ed. 2016, 55, 1138-1142.