Supplementary information

Exploiting the biomolecular corona: Pre-coating of nanoparticles enables controlled cellular interactions

Johanna Simon^{a,b,1}, Laura K. Müller^b, Maria Kokkinopoulou^b, Ingo Lieberwirth^b, Katharina Landfester^b, Svenja Morsbach^b, Volker Mailänder^{a,b*}

- ^a Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
- ^b Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.

*Corresponding author

Content

1. LC-MS analysis	2
2. Physico-chemical characterization of nanoparticles	3
3. Qualiatitive and quantitative analysis of the protein corona	3
4. Investigating corona formation via ITC and DLS	6

1. LC-MS analysis

Figure S 1. LC-MS analysis of human plasma and IgG depleted plasma. Proteins were classified into 8 different classes according to their biological function. Values are given in % based on all identified proteins. A full list of all identified proteins is supplemented in a separate Excel File Table S 1.

Table S1. All identified proteins for plasma, IgG depleted plasma and after corona formation are summarized in a separate Excel File giving their relative abundance in % and the absolute amount in fmol.

2. Physico-chemical characterization of nanoparticles

Figure S 2. Multi-angle dynamic light scattering (DLS) analysis. Angular dependency of the hydrodynamic radius R_h for uncoated (A, C) and pre-coated (B, D) nanoparticles. PS-COOH are shown in (A, B) and PS-NH₂ in (C, D).

3. Qualiatitive and quantitative analysis of the protein corona

Figure S 3. SDS PAGE analysis of the hard corona pattern of PS-COOH nanoparticles. Human plasma and IgG depleted plasma serve as a reference. PS-COOH nanoparticles were incubated with human plasma (1), coated with IgG depleted plasma (2) or pre-coated and reexposed to human plasma (3). The hard corona was isolated via repetitive centrifugation and redispersion as described in the material/methods part below.

1	Human Plasma				
2	Coated with IgG				
	depleted plasma				
3	Coated and exposed to				
	human plasma				

Figure S 4. SDS PAGE analysis of the hard corona pattern of PS-NH₂ nanoparticles. Nanoparticles were incubated with human plasma (1), coated with IgG depleted plasma (2) or pre-coated and re-exposed to human plasma (3). The hard corona was isolated as described in the material/methods part below.

Table S 2. Protein quantification via Pierce Assay of the hard protein corona. Values are given in mg per m² NP surface area \pm s.d. of three independent experiments.

in mg/m²	Human Plasma	lgG depleted plasma	Coated and exposed to human plasma
PS-COOH	1.30 ± 0.13	3.10 ± 0.22	4.20 ± 0.47
PS-NH2	0.96 ± 0.03	0.51 ± 0.08	1.06 ± 0.04

4. Investigating corona formation via ITC and DLS

Figure S 5. Corrected heat rates of isothermal titration calorimetry experiments (ITC) experiments. The plasma dilution describes the titration of plasma into water and was subtracted from the adsorption measurements after integration.

Figure S 6: Multi-angle dynamic light scattering analysis: *Upper graph:* Autocorrelation function $g_1(t)$ (black circles) of PS-COOH nanoparticles incubated with human plasma at a scattering angle $\theta = 30^{\circ}$ (A) or $\theta = 60^{\circ}$ (B). The red line (–) represents the forced fit and the blue line (–) represents the fit with an additional aggregation term. *Lower graph:* Difference between the data and the two fits. C) Angular dependency of the hydrodynamic radius R_h of PS-COOH nanoparticles (red), human plasma (black) and the aggregated formed in plasma (red).

Figure S 7. Multi-angle dynamic light scattering analysis: *Upper graph:* Autocorrelation function $g_1(t)$ (black dots) of pre-coated PS-COOH nanoparticles incubated with human plasma at a scattering angle $\theta = 30^{\circ}$ (A) or $\theta = 60^{\circ}$ (B). The red line (–) represents the forced fit. There is no additional aggregation term needed indicating that the pre-coated nanoparticles remain stable in human plasma.