## **Supporting Information**

## MoO<sub>3</sub> nanosheet arrays as superior anode materials for Li-

## and Na-ion batteries

Kuan Wu, <sup>a, 1</sup> Jing Zhan, <sup>a, 1</sup> Gang Xu, <sup>a</sup> Chen Zhang, <sup>b</sup> Dengyu Pan\*<sup>b</sup>, and Minghong Wu \*\*<sup>a</sup>

<sup>a</sup>Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
<sup>b</sup>Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
\* Corresponding author.
\*\* Corresponding author.

*E-mail addresses: dypan617@shu.edu.cn (D. Pan), mhwu@shu.edu.cn (M. Wu).* <sup>1</sup> *These authors contributed equally to this work.* 



Fig. S1 The initial three CV curves of annealed CFC for (a) LIBs and (b) SIBs.



Fig. S2 Cyclic stabilities of  $MoO_3/CFC$  prepared under different annealing temperatures,  $MoO_3$  power/CFC and annealed CFC for LIBs at a current density of 1 mA cm<sup>-2</sup>.



**Fig. S3** The SEM images for LIBs: (a) MoO<sub>3</sub> NSA/CFC and (b) MoO<sub>3</sub> powder/CFC after cycling 20 times at a current density of 1 mA cm<sup>-2</sup>.



Fig. S4 LIBs: Cyclic stabilities of MoO<sub>3</sub> NSA/CFC at a current density of (a) 2 mA cm<sup>-2</sup> and (b) 5 mA cm<sup>-2</sup>.



Fig. S5 Rate capability of annealed CFC without loading  $MoO_3$  for (a) LIBs and (b) SIBs.



Fig. S6 The calculated specific capacity of MoO<sub>3</sub> NSA/CFC for (a) LIBs and (b) SIBs.

**Calculations**: The capacity of MoO<sub>3</sub>/CFC is calculated by removing the contribution of pure CFC. Specifically, we calculate the specific capacity of MoO<sub>3</sub> NSA/CFC by using

$$SC_M = (AC_M - AC_C)/A_M$$

where  ${}^{SC_M}$  is the specific capacity of MoO<sub>3</sub> NSA/CFC,  ${}^{AC_M}$  and  ${}^{AC_C}$  are the average area capacity of MoO<sub>3</sub> NSA/CFC and CFC, respectively,  ${}^{A_M}$  is the mass loading of MoO<sub>3</sub> NSA/CFC. For example, the mass loading of MoO<sub>3</sub> NSA/CFC is 1.00 mg cm<sup>-2</sup>, and the average area capacity of MoO<sub>3</sub> NSA/CFC is 4.48 mAh cm<sup>-2</sup> at 0.1 mA cm<sup>-2</sup> (Figure 4c). The average area capacity of CFC is 2.70 mAh cm<sup>-2</sup> at 0.1 mA cm<sup>-2</sup> (Figure S5). So, the average specific capacity of MoO<sub>3</sub> NSA/CFC at 0.1 mA cm<sup>-2</sup> for LIBs is calculated as 1780 mAh g<sup>-1</sup>.



Fig. S7 Initial five discharge-charge curves of annealed CFC at  $0.1 \text{ mA cm}^{-2}$  for SIBs.



Fig. S8 SIBs: cyclic stabilities of MoO<sub>3</sub> NSA/CFC at a current density of 1 mA cm<sup>-2</sup>.

Table S1. Comparison of MoO<sub>3</sub> based anode materials for LIBs

| Active material               | Current                 | Discharge                      | Charge                     | Initial | Reference |
|-------------------------------|-------------------------|--------------------------------|----------------------------|---------|-----------|
|                               | density                 | capacity                       | capacity                   | CE(%)   |           |
| MoO <sub>3</sub> NSA/CFC      | 0.1 mA cm <sup>-2</sup> | 2273 mAh g <sup>-1</sup>       | 1978 mAh g <sup>-1</sup>   | 87      | This work |
| graphite@MoO <sub>3</sub>     | 60 mA g <sup>-1</sup>   | 385 mAh g <sup>-1</sup>        |                            |         | 1         |
| C-MoO <sub>3</sub> nanobelts  | 0.1C                    | $\sim 1300 \text{ mAh g}^{-1}$ | ~1118 mAh g <sup>-1</sup>  | ~86     | 2         |
| M0O <sub>3</sub> /C           | 0.2C                    | 945 mAh g <sup>-1</sup>        | 813 mAh g <sup>-1</sup>    | 86      | 3         |
| α-MoO <sub>3</sub> film       | 50 mA g <sup>-1</sup>   | 961 mAh g <sup>-1</sup>        | 1662 mAh g <sup>-1</sup>   | 58      | 4         |
| MoO3 film/Ni foam             | 70 mA g <sup>-1</sup>   | 1286 mAh g <sup>-1</sup>       |                            |         | 5         |
| α-MoO <sub>3</sub> /graphene  | 50 mA g <sup>-1</sup>   | 1406.8 mAh g <sup>-1</sup>     | 977.7 mAh g <sup>-1</sup>  | 70      | 6         |
| MoO3 film/Ti foil             | 0.13C                   | 980 mAh g <sup>-1</sup>        |                            |         | 7         |
| MoO <sub>3</sub> /MWCNT       | 100 mA g <sup>-1</sup>  | 1685.4 mAh g <sup>-1</sup>     | 1028.3 mAh g <sup>-1</sup> | 61      | 8         |
| MoO <sub>3</sub> /C nanobelts | 100 mA g <sup>-1</sup>  | 1595 mAh g-1                   | 1014 mAh g <sup>-1</sup>   | 64      | 9         |
| MoO <sub>3</sub> nanoflower   | 550 mA g <sup>-1</sup>  | 1432.5 mAh g <sup>-1</sup>     | 1019.6 mAh g <sup>-1</sup> | 72      | 10        |
| MoO <sub>3</sub> /NC          | 0.3C                    | 1610 mAh g <sup>-1</sup>       | 1359 mAh g <sup>-1</sup>   | 84      | 11        |
| nanosheets                    |                         |                                |                            |         |           |

| HfO <sub>2</sub> -coated MoO <sub>3</sub> | 100 mA g <sup>-1</sup> | 1728 mAh g <sup>-1</sup>   | 1120 mAh g <sup>-1</sup>  | 65 | 12 |
|-------------------------------------------|------------------------|----------------------------|---------------------------|----|----|
| h-MoO3 nanorods                           | 150 mA g <sup>-1</sup> | 1418.3 mAh g <sup>-1</sup> | 924.2 mAh g <sup>-1</sup> | 65 | 13 |
| C-MoO <sub>3</sub> NRs                    | 0.1C                   | 897 mAh g <sup>-1</sup>    |                           |    | 14 |
| Mo-MoO <sub>3</sub> -graphene             | 0.1C                   | 1145 mAh g <sup>-1</sup>   | 754 mAh g <sup>-1</sup>   | 65 | 15 |
| MoO <sub>3</sub> /CNFs                    | 500 mA g <sup>-1</sup> | 1102 mAh g <sup>-1</sup>   | 716 mAh g <sup>-1</sup>   | 65 | 16 |
| MoO <sub>3</sub> /graphene                | 50 mA g <sup>-1</sup>  | 1548 mAh g <sup>-1</sup>   |                           |    | 17 |

Table S2. Comparison of MoO3 based anode materials for SIBs

| Active material              | Current                 | Discharge                  | Charge                     | Initial | Reference |
|------------------------------|-------------------------|----------------------------|----------------------------|---------|-----------|
|                              | density                 | capacity                   | capacity                   | CE(%)   |           |
| MoO <sub>3</sub> NSA/CFC     | 0.1 mA cm <sup>-2</sup> | 1897 mAh g <sup>-1</sup>   | 1365.8 mAh g <sup>-1</sup> | 72      | This work |
| a-MoO3                       | 0.1C                    | 771 mAh g <sup>-1</sup>    | 410 mAh g <sup>-1</sup>    | 53      | 18        |
| α-MoO <sub>3</sub> nanobelts | 100 mA g <sup>-1</sup>  | 545 mAh g <sup>-1</sup>    | 330 mAh g <sup>-1</sup>    | 61      | 19        |
| MoO <sub>3</sub> /rGO        | 0.2C                    | 1061.2 mAh g <sup>-1</sup> | 934.4 mAh g <sup>-1</sup>  | 88      | 20        |
| MoO <sub>3</sub> /graphene   | 50 mA g <sup>-1</sup>   | 365.4 mAh/g                |                            |         | 21        |
| a-MoO3                       | 100 mA g <sup>-1</sup>  | 836 mAh g <sup>-1</sup>    | 344.5 mAh g <sup>-1</sup>  | 41      | 22        |
| microrods                    |                         |                            |                            |         |           |

## Reference

[1] L. Yang, W. Guo, Y. Shi, and Y. Wu, J. Alloys Comp., 2010, 501, 218-220.

[2] M. F. Hassan, Z. P. Guo, Z. Chen and H. K. Liu, J. Power Sources, 2010, 195, 2372-2376.

[3] T. Tao, A. M. Glushenkov, C. F. Zhang, H. Z. Zhang, D. Zhou, Z. P. Guo, H. K. Liu, Q. Y. Chen, H. P. Hu and Y. Chen, *J. Mater. Chem.*, 2011, **21**, 9350-9355.

[4] Y. Sun, J. Wang, B. Zhao, R. Cai, R. Ran and Z. Shao, *J. Mater. Chem. A*, 2013, 1, 4736-4746.

[5] G. Y. Zhao, N. Q. Zhang and K. N. Sun, J. Mater. Chem. A, 2013, 1, 221-224.

[6] C. L. Liu, Y. Wang, C. Zhang, X. S. Li and W. S. Dong, *Mater. Chem. Phys.*, 2014, **143**, 1111-1118.

[7] X. Yu, L. Wang, J. Liu and X. Sun, *ChemElectroChem*, 2014, 1, 1476-1479.

[8] F. Ma, A. B. Yuan, J. Q. Xu and P. F. Hu, ACS Appl. Mater. Interfaces, 2015, 7, 15531-15541.

[9] Q. Xia, H. Zhao, Z. Du, Z. Zeng, C. Gao, Z. Zhang and K. Świerczek, *Electrochim. Acta*, 2015, **180**, 947-956.

[10] Q. D. Yang, H. T. Xue, Y. Xia, Z. Guan, Y. Cheng, S. W. Tsang, and C. S. Lee, *Electrochim. Acta*, 2015, **185**, 83-89.

[11] J. Y. C. Qiu, Z. X. Yang and Y. Li, J. Mater. Chem. A, 2015, 3, 24245-24253.

[12] B. Ahmed, M. Shahid, D. H. Nagaraju, D. H. Anjum, M. N. Hedhili and H. N. Alshareef, *ACS Appl. Mater. Interfaces*, 2015, **7**, 13154-13163.

[13] J. B. Zhou, N. Lin, L. B. Wang, K. L. Zhang, Y. C. Zhu and Y. T. Qian, *J. Mater. Chem. A*, 2015, **3**, 7463-7468.

[14] J. Ding, S. A. Abbas, C. Hanmandlu, L. Lin, C. S. Lai, P. C. Wang, L. J. Li, C.

W. Chu and C. C. Chang, J. Power Sources, 2017, 348, 270-280.

[15] H. J. Lee, H. W. Shim, J. C. Kim, and D. W. Kim, *Electrochimica Acta*, 2017, **251**, 81-90.

[16] D. X. Cao, Y. Z. Dai, S. M. Xie, H.K. Wang, and C. M. Niu, *J. Colloid Interface Sci.*, 2018, **514**, 686-693.

[17] S. Wang, H. J. Zhang, D. Zhang, Y. Ma, X. F. Bi, and S. B. Yang, *J. Mater. Chem. A*, 2018, **6**, 672-679.

[18] S. Hariharan, K. Saravanan and P. Balaya, *Electrochem. Commun.*, 2013, **31**, 5-9.
[19] W. W. Xia, F. Xu, C. Y. Zhu, H. L. Xin, Q. Y. Xu, P. P. Sun, and L. T. Sun, *Nano Energy*, 2016, **27**, 447-456.

[20] M. B. Sreedhara, A. L. Santhosha, A. J. Bhattacharyya and N. R. Rao, *J. Mater. Chem. A*, 2016, **4**, 9466-9471.

[21] X. Zhang, C. Fu, J. Li, C. Yao, T. Lu and L. Pan, *Ceram. Int.*, 2017, **43**, 3769-3773.

[22] S. M. Li, H. S. Hou, Z. D. Huang, H. X. Liao, X. Q. Qiu, and X. B. Ji, *Electrochimica Acta*, 2017, **245**, 949-956.